Signal Processing Blockset™ 7
User's Guide

MATLAB
SIMULINK"

‘\The MathWorks™

Accelerating the pace of engineering and science

LN N

How to Contact The MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

www . mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
Signal Processing Blockset™ User’s Guide
© COPYRIGHT 1995-2010 The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used

or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

April 1995
May 1997
January 1998
January 1999
November 2000
June 2001

July 2002
April 2003
June 2004

October 2004
March 2005
September 2005
March 2006
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010

First printing
Second printing
Third printing
Fourth printing
Fifth printing
Online only
Sixth printing
Seventh printing
Online only

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Version 1.0

Revised for Version 2.0

Revised for Version 2.2 (Release 10)
Revised for Version 3.0 (Release 11)
Revised for Version 4.0 (Release 12)
Revised for Version 4.1 (Release 12.1)
Revised for Version 5.0 (Release 13)
Revised for Version 5.1 (Release 13SP1)
Revised for Version 6.0 (Release 14) (Renamed from DSP
Blockset User’s Guide)

Revised for Version 6.0.1 (Release 14SP1)
Revised for Version 6.1 (Release 14SP2)
Revised for Version 6.2 (Release 14SP3)
Revised for Version 6.3 (Release 2006a)
Revised for Version 6.4 (Release 2006b)
Revised for Version 6.5 (Release 2007a)
Revised for Version 6.6 (Release 2007b)
Revised for Version 6.7 (Release 2008a)
Revised for Version 6.8 (Release 2008b)
Revised for Version 6.9 (Release 2009a)
Revised for Version 6.10 (Release 2009b)
Revised for Version 7.0 (Release 2010a)

Working with Signals

1

Discrete-Time Signals 1-2
Time and Frequency Terminology 1-2
Recommended Settings for Discrete-Time Simulations ... 14
Other Settings for Discrete-Time Simulations 1-6

Continuous-Time Signals 1-11
Continuous-Time Source Blocks 1-11
Continuous-Time Nonsource Blocks 1-11

Sample-Based Signals 1-13
Sample-Based Single Channel Signals 1-13
Sample-Based Multichannel Signals 1-13

Frame-Based Signals 1-15
Frame-Based Single Channel Signals 1-15
Frame-Based Multichannel Signals 1-15
Benefits of Frame-Based Processing 1-16

Creating Sample-Based Signals 1-19
Using the Constant Block 1-19
Using the Signal from Workspace Block 1-21

Creating Frame-Based Signals 1-25
Using the Sine Wave Block 1-25
Using the Signal from Workspace Block 1-28

Creating Multichannel Sample-Based Signals 1-32
Multichannel Sample-Based Signals 1-32
Combining Single-Channel Sample-Based Signals 1-32
Combining Multichannel Sample-Based Signals 1-35

Creating Multichannel Frame-Based Signals 1-38

vi

Contents

Multichannel Frame-Based Signals 1-38

Combining Frame-Based Signals 1-39
Deconstructing Multichannel Sample-Based Signals .. 1-42
Splitting Multichannel Sample-Based Signals into
Individual Signals 1-42
Splitting Multichannel Sample-Based Signals into Several
Multichannel Signals, 1-45
Deconstructing Multichannel Frame-Based Signals ... 1-49
Splitting Multichannel Frame-Based Signals into
Individual Signals 1-49
Reordering Channels in Multichannel Frame-Based
S1gnals ... e 1-54
Importing and Exporting Sample-Based Signals 1-58
Importing Sample-Based Vector Signals 1-58
Importing Sample-Based Matrix Signals 1-61
Exporting Sample-Based Signals 1-65
Importing and Exporting Frame-Based Signals 1-70
Importing Frame-Based Signals 1-70
Exporting Frame-Based Signals 1-73
Displaying Time-Domain Data 1-79
Displaying Time Domain Data in the Vector Scope 1-79
Displaying Time-Domain Data in the Time Scope 1-82
Displaying Frequency-Domain Data 1-100

Advanced Signal Concepts

2

Inspecting Sample Rates and Frame Rates 2-2
Sample Rate and Frame Rate Concepts 2-2
Inspecting Sample-Based Signals Using the Probe Block .. 2-3
Inspecting Frame-Based Signals Using the Probe Block .. 2-5
Inspecting Sample-Based Signals Using Color Coding 2-7

Inspecting Frame-Based Signals Using Color Coding 2-9

Converting Sample and Frame Rates 2-11
Rate Conversion Blocks 2-11
Rate Conversion by Frame-Rate Adjustment 2-12
Rate Conversion by Frame-Size Adjustment 2-15
Avoiding Unintended Rate Conversion 2-19
Frame Rebuffering Blocks 2-24
Buffering with Preservation of the Signal 2-27
Buffering with Alteration of the Signal 2-30

Converting Frame Status 2-33
Frame Status i 2-33
Buffering Sample-Based Signals into Frame-Based

S1gnals ... e 2-33
Buffering Sample-Based Signals into Frame-Based Signals

withOverlap 2-37
Buffering Frame-Based Signals into Other Frame-Based

S1gnals ... e 2-41
Buffering Delay and Initial Conditions 2-44
Unbuffering Frame-Based Signals into Sample-Based

S1gnals ... e 2-45

Delayand Latency 2-49
Computational Delay 0., 2-49
AlgorithmicDelay 2-51
Zero Algorithmic Delay 2-51
Basic AlgorithmicDelay 2-54
Excess Algorithmic Delay (Tasking Latency) 2-57
Predicting Tasking Latency 2-59

Filters

Digital Filter Block 3-2
Overview of the Digital Filter Block 3-2
Implementing a Lowpass Filter 3-3
Implementing a Highpass Filter 3-4
Filtering High-Frequency Noise 3-5

vii

Specifying Static Filters 3-9

Specifying Time-Varying Filters 3-10
Specifying the SOS Matrix (Biquadratic Filter

Coefficients)coiiiiiiiiiiii .. 3-15
Digital Filter Design Block 3-17
Overview of the Digital Filter Design Block 3-17
Choosing Between Filter Design Blocks 3-18
Creating a Lowpass Filter 3-21
Creating a Highpass Filter 3-23
Filtering High-Frequency Noise 3-25
Filter Realization Wizard 3-31
Overview of the Filter Realization Wizard 3-31
Designing and Implementing a Fixed-Point Filter 3-32

Setting the Filter Structure and Number of Filter
SECEIONS v e e 3-48
Optimizing the Filter Structure 3-49
Analog Filter Design Block 3-51
Adaptive Filters 3-53
Creating an Acoustic Environment 3-53
Creating an Adaptive Filter 3-55
Customizing an Adaptive Filter 3-60
Adaptive Filtering Demoscciii... .. 3-64
Multirate Filters 3-66
Filter Banks ittt 3-66
Multirate Filtering Examples 3-74
Transforms

q

Transforming Time-Domain Data into the Frequency
Domain e 4-2

viii Contents

Transforming Frequency-Domain Data into the Time

Domain 4-7
Linear and Bit-Reversed Output Order 4-12
FFT and IFFT Blocks DataOrder 4-12
Finding the Bit-Reversed Order of Your Frequency
Indices i 4-12

Calculating the Channel Latencies Required for

5

Wavelet Reconstruction 4-14
Analyzing Your Model 4-14
Calculating the Group Delay of Your Filters 4-16
Reconstructing the Filter Bank System 4-18
Equalizing the Delay on Each Filter Path 4-18
Updating and Running the Model 4-21
Referencesoiiiiiiiiiii i 4-22
Quantizers
Scalar Quantizers 5-2
Analysis and Synthesis of Speech 5-2
Identifying Your Residual Signal and Reflection
Coefficients, 5-4
Creating a Scalar Quantizercouuuueeeee... 5-5
Vector Quantizersc.ciiiiiiieeeennnn. 5-10
Building Your Vector Quantizer Model 5-10
Configuring and Running Your Model 5-11

Statistics, Estimation, and Linear Algebra

6

StatistiCso e 6-2
Statistics Blocks 6-2

ix

X

Contents

Basic Operationsiiiiimnnnnneeennnn.
Running Operationsc.0uiiiiiiinnnn.

Power Spectrum Estimation

Linear Algebra
Linear Algebra Blocks
Linear System Solversciitiiiiinnnnnn.
Matrix Factorizations
Matrix Inversesouiiiiiii i,

6-3
6-4

6-6

6-7

Working with Fixed-Point Data

7

Fixed-Point Signal Processing Development
Fixed-Point Featurescouiiivoo...
Benefits of Fixed-Point Hardware
Benefits of Fixed-Point Design with Signal Processing

Blockset Software,
Fixed-Point Signal Processing Applications

Concepts and Terminology
Fixed-Point Data Types,
Scallng ... e
PrecisionandRange

Arithmetic Operations
Modulo Arithmetic iiiinnnnn..
Two’s Complementc..0iiiiiinnnnnnn.
Addition and Subtraction
Multiplication 0ttt
CaStS o e

Specifying Fixed-Point Attributes
Fixed-Point Block Parameters
Specifying System-Level Settings
Inherit via Internal Rule

7-2
7-2
7-2

7-3
7-4

Example: Selecting and Specifying Data Types for

Fixed-Point Blocks 7-37
Fixed-Point Filtering 7-45
Fixed-Point Filtering Blocks 7-45
Filter Implementation Blocks 7-45
Filter Design and Implementation Blocks 7-46

Getting Started with System Objects

What Are System Objects? 8-2
Setting Up and Running System Objects 8-3
Creating an Instance of a System Object 8-3
Using Methods to Run System Objects 8-6
Finding Help and Demos for System Objects 8-8

Using System Objects with the Embedded MATLAB

Subset e 8-9
Considerations for Using System Objects with the
Embedded MATLAB Subset 8-9
Using System Objects with Embedded MATLAB Coder .. 8-11
Using System Objects with the Embedded MATLAB
FunctionBlock 8-12
Using System Objects with Embedded MATLAB MEX ... 8-12

Using Signal Processing System Objects

What Are Signal Processing System Objects? 9-2

Generating Code for Signal Processing System
ObjJects e e 9-3

xi

xii

Contents

Working with Signals and Fixed-Point Data 9-5
What Are Sample- and Frame-Based Processing? 9-5
Working with Fixed-Point Data 9-10

Example: Using System Objects in Signal Processing
Applications: Filtering an Audio Stream 9-15

Index

Working with Signals

This chapter helps you understand how sample-based and frame-based signals
are represented in the Simulink® environment. You learn how to create
single-channel and multichannel sample-based and frame-based signals. You
also learn how to extract single-channel signals from multichannel signals.
Lastly you explore how to import signals into signal processing models and
export signals to the MATLAB® workspace.

¢ “Discrete-Time Signals” on page 1-2

¢ “Continuous-Time Signals” on page 1-11

* “Sample-Based Signals” on page 1-13

¢ “Frame-Based Signals” on page 1-15

® “Creating Sample-Based Signals” on page 1-19

¢ “Creating Frame-Based Signals” on page 1-25

¢ “Creating Multichannel Sample-Based Signals” on page 1-32

® “Creating Multichannel Frame-Based Signals” on page 1-38

¢ “Deconstructing Multichannel Sample-Based Signals” on page 1-42

¢ “Deconstructing Multichannel Frame-Based Signals” on page 1-49

¢ “‘Importing and Exporting Sample-Based Signals” on page 1-58

¢ “‘Importing and Exporting Frame-Based Signals” on page 1-70

¢ “Displaying Time-Domain Data” on page 1-79

¢ “Displaying Frequency-Domain Data” on page 1-100

1 Working with Signals

Discrete-Time Signals

In this section...

“Time and Frequency Terminology” on page 1-2

“Recommended Settings for Discrete-Time Simulations” on page 1-4

“Other Settings for Discrete-Time Simulations” on page 1-6

Time and Frequency Terminology

Simulink models can process both discrete-time and continuous-time signals.
Models built with Signal Processing Blockset™ software are often intended
to process discrete-time signals only. A discrete-time signal is a sequence of
values that correspond to particular instants in time. The time instants at
which the signal is defined are the signal’s sample times, and the associated
signal values are the signal’s samples. Traditionally, a discrete-time signal
1s considered to be undefined at points in time between the sample times.
For a periodically sampled signal, the equal interval between any pair of
consecutive sample times is the signal’s sample period, T.. The sample rate,
F, is the reciprocal of the sample period, or 1/7.. The sample rate is the
number of samples in the signal per second.

The 7.5-second triangle wave segment below has a sample period of 0.5

second, and sample times of 0.0, 0.5, 1.0, 1.5, ...,7.5. The sample rate of the
sequence 1s therefore 1/0.5, or 2 Hz.

—*‘T, k-

ﬁ?ﬂjj’???ﬂﬁ? i

fime [s)

A number of different terms are used to describe the characteristics of
discrete-time signals found in Simulink models. These terms, which are listed
in the following table, are frequently used to describe the way that various
blocks operate on sample-based and frame-based signals.

Discrete-Time Signals

Term Symbol| Units Notes

Sample period T, Seconds The time interval between consecutive samples in a
T, sequence, as the input to a block (T, or the output
T, from a block (T,).

Frame period Tf Seconds The time interval between consecutive frames in a
Tﬁ sequence, as the input to a block (T;) or the output
T, from a block (T}).

Signal period T Seconds The time elapsed during a single repetition of a

periodic signal.

Sample F, Hz (samples | The number of samples per unit time, F__1/T..

frequency per second)

Frequency f Hz (cycles The number of repetitions per unit time of a periodic

per second) | signal or signal component, f= 1/T.
Nyquist rate Hz (cycles The minimum sample rate that avoids aliasing,
per second) | usually twice the highest frequency in the signal
being sampled.

Nyquist fny ; Hz (cycles Half the Nyquist rate.

frequency per second)

Normalized f, Two cycles Frequency (linear) of a periodic signal normalized to

frequency per sample | half the sample rate, f, = o/m = 2f/F..

Angular Q Radians per | Frequency of a periodic signal in angular units,

frequency second Q = 2mf.

Digital ® Radians per | Frequency (angular) of a periodic signal normalized

(normalized sample to the sample rate, o = Q/F, = 1f,.

angular)

frequency

Note In the Block Parameters dialog boxes, the term sample time is used to
refer to the sample period, T,. For example, the Sample time parameter
in the Signal From Workspace block specifies the imported signal’s sample

period.

1 Working with Signals

Recommended Settings for Discrete-Time Simulations

Simulink allows you to select from several different simulation solver
algorithms. You can access these solver algorithms from a Simulink model:

1 In the Simulink model window, from the Simulation menu, select
Configuration Parameters. The Configuration Parameters dialog
box opens.

2 In the Select pane, click Solver.

The selections that you make here determine how discrete-time signals are
processed in Simulink. The recommended Solver options settings for
signal processing simulations are

* Type: Fixed-step

Solver: Discrete (no continuous states)

Fixed step size (fundamental sample time): auto

Tasking mode for periodic sample times: SingleTasking

Discrete-Time Signals

=] configuration Parameters: untitled/Configuration : el
Sl —Simulation time =
- Solver Shart tirne: IEI_I:I Shop tire: |1E|_I:|
- Data Impoart/E=part
Dptlmlzat_lon —Salver options
[~ Diagnostics
b~ Gample Time Type: I Fixed-step | Salver. I dizorete [no continuous states) =]
i D ata Integrity
b Conversion Periodic sample time constraint: I Unconstrained ;l
I:':'nne':_m_"!t-"' Fized step size [fundamental sample time): Iautc.
i Compatibility
... Model Referencing T azking mode for penodic zample times: I SingleT azking LI

- Hardware |mplementation

- Model Referencing

[=- Real-Time Workshop
Comments

Symbalz

Cugtom Code

[Debug

Lo Interface

™ Higher priority value indicates higher task priority

A

ak LCancel Help Apply |

You can automatically set the above solver options for all new models by
running the dspstartup.m file. See “Configuring the Simulink Environment
for Signal Processing Models” in the Signal Processing Blockset Getting
Started Guide for more information.

In Fixed-step SingleTasking mode, discrete-time signals differ from the
prototype described in “Time and Frequency Terminology” on page 1-2 by
remaining defined between sample times. For example, the representation
of the discrete-time triangle wave looks like this.

_,‘Ts .

- O —
0 1 1 i 4 5 6 7 time [s)

1-5

1 Working with Signals

1-6

The above signal’s value at t=3.112 seconds is the same as the signal’s value
at t=3 seconds. In Fixed-step SingleTasking mode, a signal’s sample times
are the instants where the signal is allowed to change values, rather than
where the signal is defined. Between the sample times, the signal takes on
the value at the previous sample time.

As a result, in Fixed-step SingleTasking mode, Simulink permits
cross-rate operations such as the addition of two signals of different rates.
This is explained further in “Cross-Rate Operations” on page 1-7.

Other Settings for Discrete-Time Simulations

It 1s useful to know how the other solver options available in Simulink affect
discrete-time signals. In particular, you should be aware of the properties of
discrete-time signals under the following settings:

* Type: Fixed-step, Mode: MultiTasking
e Type: Variable-step (the Simulink default solver)
e Type: Fixed-step, Mode: Auto

When the Fixed-step MultiTasking solver is selected, discrete signals in
Simulink are undefined between sample times. Simulink generates an error
when operations attempt to reference the undefined region of a signal, as, for
example, when signals with different sample rates are added.

When the Variable-step solver is selected, discrete time signals remain
defined between sample times, just as in the Fixed-step SingleTasking
case described in “Recommended Settings for Discrete-Time Simulations” on
page 1-4. When the Variable-step solver is selected, cross-rate operations
are allowed by Simulink.

In the Fixed-step Auto setting, Simulink automatically selects a tasking
mode, single-tasking or multitasking, that is best suited to the model. See
“Simulink Tasking Mode” on page 2-57 for a description of the criteria that
Simulink uses to make this decision. For the typical model containing
multiple rates, Simulink selects the multitasking mode.

Discrete-Time Signals

Cross-Rate Operations

When the Fixed-step MultiTasking solver is selected, discrete signals

in Simulink are undefined between sample times. Therefore, to perform
cross-rate operations like the addition of two signals with different sample
rates, you must convert the two signals to a common sample rate. Several
blocks in the Signal Operations and Multirate Filters libraries can accomplish
this task. See “Converting Sample and Frame Rates” on page 2-11 for more
information. By requiring explicit rate conversions for cross-rate operations
in discrete mode, Simulink helps you to identify sample rate conversion issues
early in the design process.

When the Variable-step solver or Fixed-step SingleTasking solver

is selected, discrete time signals remain defined between sample times.
Therefore, if you sample the signal with a rate or phase that is different from
the signal’s own rate and phase, you will still measure meaningful values:

1 At the MATLAB command line, type doc_sum_tut1.

The Cross-Rate Sum Example model opens. This model sums two signals
with different sample periods.

1-7

1 Working with Signals

=] doc_sum_tut1 O] x|

File Edit WView Simulation Format Tools Help

O @ H&| s d 2@ r ufon [N =

In this examgle, the Sum oloc adds two signsls having

|Cross-Rate Sum Example | 7" =" N)

1:10 |_>

Signal Fram — dsp_sxamolas_yout
dEoaoe L
To Wordspace
orkspacel
Mote: This modsel orestes 5 workspaoe varisole called "dso_sxamplas yout™.
Varisolas will o2 cleerzd whan the model iz clossd,
Ready [100% | | [FixedstepDiscrete 5

2 Double-click the upper Signal From Workspace block. The Block
Parameters: Signal From Workspace dialog box opens.

3 Set the Sample time parameter to 1.

This creates a fast signal, (7,=1), with sample times 1, 2, 3, ...
4 Double-click the lower Signal From Workspace block
5 Set the Sample time parameter to 2.

This creates a slow signal, (7,=2), with sample times 1, 3, 5, ...

6 From the Format menu choose Sample Time Display > Colors.

Discrete-Time Signals

Checking the Colors option allows you to see the different sampling rates in
action. For more information about the color coding of the sample times see
“How to View Sample Time Information” in the Simulink documentation.

7 Run the model.

Note Using the dspstartup configurations with cross-rate operations
generates errors even though the Fixed-step SingleTasking solver is
selected. This is due to the fact that Single task rate transition is set
to error in the Sample Time pane of the Diagnostics section of the
Configuration Parameters dialog box.

8 At the MATLAB command line, type dsp_examples_yout.
The following output is displayed:

dsp_examples_yout =
1 1

o uwN

9
11
12
14
15

6

—
OO0 VWO NOOOP~WNDN

OO0, P OWONDND =

The first column of the matrix is the fast signal, (T,=1). The second column
of the matrix is the slow signal (7, =2). The third column is the sum of the
two signals. As expected, the slow signal changes once every 2 seconds, half
as often as the fast signal. Nevertheless, the slow signal is defined at every
moment because Simulink holds the previous value of the slower signal
during time instances that the block doesn’t run.

1-9

1 Working with Signals

In general, for Variable-step and Fixed-step SingleTasking modes, when
you measure the value of a discrete signal between sample times, you are
observing the value of the signal at the previous sample time.

1-10

Continuous-Time Signals

Continuous-Time Signals

In this section...

“Continuous-Time Source Blocks” on page 1-11

“Continuous-Time Nonsource Blocks” on page 1-11

Continuous-Time Source Blocks

Most signals in a signal processing model are discrete-time signals. However,
many blocks can also operate on and generate continuous-time signals, whose
values vary continuously with time. Source blocks are those blocks that
generate or import signals in a model. Most source blocks appear in the
Signal Processing Sources library. The sample period for continuous-time
source blocks is set internally to zero. This indicates a continuous-time
signal. The Simulink Signal Generator and Constant blocks are examples

of continuous-time source blocks. Continuous-time signals are rendered in
black when, from the Format menu, you point to Sample Time Display
and select Colors.

When connecting continuous-time source blocks to discrete-time blocks, you
might need to interpose a Zero-Order Hold block to discretize the signal.
Specify the desired sample period for the discrete-time signal in the Sample
time parameter of the Zero-Order Hold block.

gooo i 5

Wrong: ot > 'T\?) [Error: Continuaus sample fimes
not allowed far upsample blacks.

tigna Upsamale To Miok=pace

Ganzralor

uuuy
Comred: | oo o L » T | ot

Signa Zaro-Dhidar Upsampls To Wolap ace

Genzratar Holc

Continuous-Time Nonsource Blocks

Most nonsource blocks in Signal Processing Blockset software accept
continuous-time signals, and all nonsource blocks inherit the sample period
of the input. Therefore, continuous-time inputs generate continuous-time

1-11

1 Working with Signals

outputs. Blocks that are not capable of accepting continuous-time signals
include the Digital Filter, FIR Decimation, FIR Interpolation blocks.

1-12

Sample-Based Signals

Sample-Based Signals

In this section...

“Sample-Based Single Channel Signals” on page 1-13
“Sample-Based Multichannel Signals” on page 1-13

Sample-Based Single Channel Signals

Signals can be sample-based or frame-based, single channel or multichannel.
The following figure shows a discrete-time signal. If this signal is propagated
through a model sample-by-sample, rather than in batches of samples, it is
called a sample-based signal. It is also single-channel signal, because there is
only one independent sequence of numbers.

—*‘T, k-

ﬁ?ﬂjj’???ﬂjj’? !

fime [s)

The representation of single-channel signals is actually a special case of the
general multichannel signal.

Sample-Based Multichannel Signals

Sample-based multichannel signals are represented as matrices. An M-by-N
sample-based matrix represents M*N independent channels, each containing
a single value. In other words, each matrix element represents one sample
from a distinct channel.

1-13

1 Working with Signals

1-14

As an example, consider the 24-channel (6-by-4) sample-based signal in the
figure below, where u!7 is the first matrix in the series, u*7! is the second,
u'=? is the third, and so on.

4444“’253'“
a|alala| V)
414 313303 samtf;!e'&
414|333z ")
4141133 222 2] sample 2
414 3|3 2121212 'ubﬂ'
8181122 11 TATa sample 1
332211111u7:”}
21211101
212111
1[1]1]1
1[1]1]1

The signal in channel 1 is composed of the following sequence:

t=0 ¢=1 =2
Uil U1 >uU11 »---

Similarly, channel 9 (counting down the columns) contains the following
sequence:

t=0 _t=1 =2
ugg ,Ugz9 ,U39 ,...

In practice, signal samples are frequently transmitted in batches, or frames,
and several channels of data are often transmitted simultaneously in
order to accelerate simulations. Hence, most signals are frame-based and
multichannel signals.

Frame-Based Signals

Frame-Based Signals

In this section...

“Frame-Based Single Channel Signals” on page 1-15
“Frame-Based Multichannel Signals” on page 1-15

“Benefits of Frame-Based Processing” on page 1-16

Frame-Based Single Channel Signals

Signals can be sample-based or frame-based, single channel or multichannel.
The following figure shows a discrete-time signal. If this signal is propagated
through a model in batches of samples, it is called a frame-based signal. It is
also a single-channel signal, because there is only one independent sequence
of numbers.

_,‘Ts .

4?TTTT??TTT% i

fime [s)

Frame-based single channel signals are represented as vectors. An M-by-1
frame-based vector represents M consecutive samples from a single channel.
In other words, each matrix row represents one sample, or time slice, from
one distinct channel.

Frame-Based Multichannel Signals

Frame-based multichannel signals are represented as matrices. An M-by-N
frame-based matrix represents M consecutive samples from each of N
independent channels. In other words, each matrix row represents one
sample, or time slice, from N distinct signal channels, and each matrix column
represents M consecutive samples from a single channel.

1-15

1 Working with Signals

Consider a sequence of frame matrices, where u‘™ is the first matrix in a
series, u'~! is the second, u*= is the third, and so on.

13[13[13)13 Wf‘f
141ah1aj1a| 7
15/15[15[15
15161‘3 .-.? 71 7 frame 2
17888 ("
1818[Is oo
B 10 ﬂ 11117 framel
2 [2]2]| W™
12]12
33|33
alalala
5|5|5|5
66|66

chl ch2 chd chd

The signal in channel 1 is the following sequence:

t=0 =0 =0 =0 =1 =1 =2 =2
Uil >uUg21 >U31 »---UM1,UIL1 U] ,u31 » uﬂll’ull yU21 5

Similarly, the signal in channel 3 is the following sequence:

t=0 _¢=0 _t=0 =0 =1 ¢=1 t=1 =2 =2
Uiz ,U23 , U33 »- uﬂlS’ul3 yU23 ,u33 . uﬂl3au13 s U23 5-

Benefits of Frame-Based Processing

Frame-based processing is an established method of accelerating both
real-time systems and simulations.

Accelerating Real-Time Systems

Frame-based data is a common format in real-time systems. Data acquisition
hardware often operates by accumulating a large number of signal samples

1-16

Frame-Based Signals

at a high rate, and propagating these samples to the real-time system as a
block of data. This maximizes the efficiency of the system by distributing the
fixed process overhead across many samples; the “fast” data acquisition is
suspended by “slow” interrupt processes after each frame is acquired, rather
than after each individual sample.

The figure below illustrates how throughput is increased by frame-based
data acquisition. The thin blocks each represent the time elapsed during
acquisition of a sample. The thicker blocks each represent the time elapsed
during the interrupt service routine (ISR) that reads the data from the
hardware.

In this example, the frame-based operation acquires a frame of 16 samples
between each ISR. The frame-based throughput rate is therefore many times
higher than the sample-based alternative.

Soraple-based operation

ISR
—hy

QL) A 1 i) R

I—n:quiresnmple

Frome-based operation

acquire 16 samples I5R

Py '—Lq

AL AL L LB G AL B Iy QG G GL L U B LG L ARG L

A . . . W fime
latency

It’s important to note that frame-based processing introduces a certain
amount of latency into a process due to the inherent lag in buffering the
initial frame. In many instances, however, it is possible to select frame sizes
that improve throughput without creating unacceptable latencies. For more
information, see “Delay and Latency” on page 2-49.

1-17

1 Working with Signals

Accelerating Simulations

The simulation of your model also benefits from frame-based processing. In
this case, it is the overhead of block-to-block communications that is reduced
by propagating frames rather than individual samples.

1-18

Creating Sample-Based Signals

Creating Sample-Based Signals

In this section...

“Using the Constant Block” on page 1-19
“Using the Signal from Workspace Block” on page 1-21

Using the Constant Block

A constant sample-based signal has identical successive samples. The Signal
Processing Sources library provides the following blocks for creating constant
sample-based signals:

¢ Constant Diagonal Matrix

¢ Constant

¢ Identity Matrix

The most versatile of the blocks listed above is the Constant block. This topic

discusses how to create a constant sample-based signal using the Constant
block:

1 Create a new Simulink model.

2 From the Signal Processing Sources library, click-and-drag a Constant
block into the model.

3 From the Signal Processing Sinks library, click-and-drag a Display block
into the model.

4 Connect the two blocks.

5 Double-click the Constant block, and set the block parameters as follows:
e Constant value=1[1 2 3; 4 5 6]
¢ Interpret vector parameters as 1-D = Clear this check box
¢ Sampling Mode = Sample based

* Sample time = 1

1-19

1 Working with Signals

1-20

Based on these parameters, the Constant block outputs a constant,
discrete-valued, sample-based matrix signal with a sample period of 1
second.

The Constant block’s Constant value parameter can be any valid
MATLAB variable or expression that evaluates to a matrix. See “Linear
Algebra” in the MATLAB documentation for a thorough introduction to
constructing and indexing matrices.

6 Save these parameters and close the dialog box by clicking OK.

7 From the Format menu, point to Port/ Signal Displays and select
Signal Dimensions.

8 Run the model and expand the Display block so you can view the entire
signal.

You have now successfully created a six-channel, constant sample-based
signal with a sample period of 1 second.

To view the model you just created, and to learn how to create a 1-D vector
signal from the block diagram you just constructed, continue to the next
section.

Creating a 1-D Vector Signal

You can create a 1-D vector signal by modifying the block diagram you
constructed in the previous section:

1 To add another sample-based signal to your model, copy the block diagram
you created in the previous section and paste it below the existing
sample-based signal in your model.

2 Double-click the Constantl block, and set the block parameters as follows:
e Constant value=[1 2 3 4 5 6]
¢ Interpret vector parameters as 1-D = Check this box

* Sample time = 1

3 Save these parameters and close the dialog box by clicking OK.

Creating Sample-Based Signals

4 Run the model and expand the Display1l block so you can view the entire

signal.

Your model should now look similar to the following figure.

You can also

open this model by typing doc_usingcnstblksb at the MATLAB command

line.
JR1=TE
File Edit View Simulation Format Tools Help
D EH&| $ER|(E= 4|22 mho N R RE s eEEE
Creating Sample-Based Signals Using the Constant Block
1oz o lma I il E 2]
5 ¢ <] il]|]| 7]
— Coc Example
Constant Display Info
O N e o [il Bl gl &l &l 7] |
Constant1 Dizplay1
Copyright 2004-2008 The MathWeads, Inc.
Ready [100% [[[FixedstepDiscrete v

The Constant1 block generates a length-6 1-D vector signal. This means that
the output is not a matrix. However, most nonsource signal processing blocks
interpret a length-M 1-D vector as an M-by-1 matrix (column vector).

Note A 1-D vector signal must always be sample based.

Using the Signal from Workspace Block

This topic discusses how to create a four-channel sample-base
sample period of 1 second using the Signal From Workspace b

d signal with a
lock:

1-21

1 Working with Signals

1 Create a new Simulink model.

2 From the Signal Processing Sources library, click-and-drag a Signal From
Workspace block into the model.

3 From the Signal Processing Sinks library, click-and-drag a Signal To
Workspace block into the model.

4 Connect the two blocks.

5 Double-click the Signal From Workspace block, and set the block
parameters as follows:

e Signal=cat(3,[1 -1;0 5],[2 -2;0 5],[3 -3;0 5])
e Sample time = 1
e Samples per frame = 1

¢* Form output after final data value by = Setting to zero

Based on these parameters, the Signal From Workspace block outputs a
four-channel sample-based signal with a sample period of 1 second. After
the block has output the signal, all subsequent outputs have a value of
zero. The four channels contain the following values:

Channel 1: 1, 2, 3, 0, 0,...
Channel 2: -1, -2, -3, 0, 0,...
Channel 3: 0, 0, 0, 0, 0,...
Channel 4: 5, 5, 5, 0, 0,...

6 Save these parameters and close the dialog box by clicking OK.

7 From the Format menu, point to Port/Signal Displays, and select
Signal Dimensions.

8 Run the model.

1-22

Creating Sample-Based Signals

The following figure is a graphical representation of the model’s
behavior during simulation. You can also open the model by typing
doc_usingsfwblksb at the MATLAB command line.

E!duc_usingsfwhlksh * ;lglﬁl

File Edit Wiew Simulation Format Tools Help

DleEd&| & 2R = r ss0 |unmd FHgB &l wERE T ®

Creating Sample-Based Signals Using the Signal From Workspace Block

aa 3-3 22 L -
cati,[1 10 8L 20 8E 2080 — \aal g s| " lo 5| la s|— ™ vt
Signal From _ _ _ _ Signal To
Warkspase t=3 =1 f=1 f=1 Wokspace Doc Example
J Info
first matrix output
Ready [100% | | FixedstepDiscrete

9 At the MATLAB command line, type yout.

The following is a portion of the output:

yout(:,:,1) =
1 -1
0 5
yout(:,:,2) =
2 -2
0 5
yout(:,:,3) =
3 -3
0 5

1-23

1 Working with Signals

yout(:,:,4) =
0 0
0 0

You have now successfully created a four-channel sample-based signal with
sample period of 1 second using the Signal From Workspace block.

1-24

Creating Frame-Based Signals

Creating Frame-Based Signals

In this section...

“Using the Sine Wave Block” on page 1-25

“Using the Signal from Workspace Block” on page 1-28

Using the Sine Wave Block

A frame-based signal is propagated through a model in batches of samples
called frames. Frame-based processing can significantly improve the
performance of your model by decreasing the amount of time it takes your
simulation to run. The Signal Processing Sources library provides the
following blocks for automatically generating common frame-based signals:
¢ Chirp

® Discrete Impulse

¢ Constant

¢ Multiphase Clock

e N-Sample Enable

¢ Signal From Workspace

® Sine Wave

For information about the specific functionality of these blocks, see their
respective block reference pages.

One of the most commonly used blocks in the Signal Processing Sources
library is the Sine Wave block. This topic describes how to create a
three-channel frame-based signal using the Sine Wave block:

1 Create a new Simulink model.

2 From the Signal Processing Sources library, click-and-drag a Sine Wave
block into the model.

3 From the Matrix Operations library, click-and-drag a Matrix Sum block
into the model.

1-25

1 Working with Signals

4 From the Signal Processing Sinks library, click-and-drag a Signal to
Workspace block into the model.

5 Connect the blocks in the order in which you added them to your model.

6 Double-click the Sine Wave block, and set the block parameters as follows:

Amplitude = [1 3 2]
* Frequency = [100 250 500]
e Sample time = 1/5000

¢ Samples per frame = 64

Based on these parameters, the Sine Wave block outputs three sinusoids
with amplitudes 1, 3, and 2 and frequencies 100, 250, and 500 hertz,
respectively. The sample period, 1/5000, is 10 times the highest sinusoid

frequency, which satisfies the Nyquist criterion. The frame size is 64 for all
sinusoids, and, therefore, the output has 64 rows.

7 Save these parameters and close the dialog box by clicking OK.

You have now successfully created a three-channel frame-based signal
using the Sine Wave block. The rest of this procedure describes how to
add these three sinusoids together.

8 Double-click the Matrix Sum block. Set the Sum over parameter to
Specified dimension, and set the Dimension parameter to 2. Click OK.

9 From the Format menu, point to Port/Signal Displays, and select
Signal Dimensions.

10 Run the model.

1-26

Creating Frame-Based Signals

Your model should now look similar to the following figure. You can
also open the model by typing doc_usingsinwaveblkfb at the MATLAB
command line.

_iox]

File Edit View Simulation Format Tools Help

D@ d& & BR[| 4 922 b = [0256 | [Nomal Ml EsERE s R

Creating Frame-Based Signals Using the Sine Wave Block

DSF
IH_']LU' [B4x3] . Z [Bdx1] |

Sins Wave M atrizx EIi-;r'Ell To
Sum Workspaos Doc Example
Info
Copyright 2004-2008 The MathWeds, Inc
Ready [100% | | [FixedstepDiscrete

The three signals are summed point-by-point by a Matrix Sum block. Then,
they are exported to the MATLAB workspace.

1-27

1 Working with Signals

11 At the MATLAB command line, type plot(yout(1:100)).

Your plot should look similar to the following figure.

J Figure No. 1 =[O x|

File Edit Wiew Insert Tools Window Help

DzE&e r fpe+ s B OE ODMN NN 3B

This figure represents a portion of the sum of the three sinusoids. You have
now added the channels of a three-channel frame-based signal together and
displayed the results in a figure window.

Using the Signal from Workspace Block

A frame-based signal is propagated through a model in batches of samples
called frames. Frame-based processing can significantly improve the
performance of your model by decreasing the amount of time it takes
your simulation to run. This topic describes how to create a two-channel

1-28

Creating Frame-Based Signals

frame-based signal with a sample period of 1 second, a frame period of 4
seconds, and a frame size of 4 samples using the Signal From Workspace block:

1 Create a new Simulink model.

2 From the Signal Processing Sources library, click-and-drag a Signal From
Workspace block into the model.

3 From the Signal Processing Sinks library, click-and-drag a Signal To
Workspace block into the model.

4 Connect the two blocks.

5 Double-click the Signal From Workspace block, and set the block
parameters as follows:

e Signal=[1:10; 11 0011001 1]'
e Sample time = 1
e Samples per frame = 4

® Form output after final data value by = Setting to zero

Based on these parameters, the Signal From Workspace block outputs a
two-channel, frame-based signal has a sample period of 1 second, a frame
period of 4 seconds, and a frame size of four samples. After the block
outputs the signal, all subsequent outputs have a value of zero. The two
channels contain the following values:

e Channel 1: 1, 2, 3,4, 5,6, 7, 8,9, 10, 0, 0,...
e Channel 2: 1,1,0,0,1,1,0,0,1, 1, 0, O,...

6 Save these parameters and close the dialog box by clicking OK.

7 From the Format menu, point to Port/Signal Displays, and select
Signal Dimensions.

1-29

1 Working with Signals

8 Run the model.

The following figure is a graphical representation of the model’s
behavior during simulation. You can also open the model by typing
doc_usingsfwblkfb at the MATLAB command line.

(ol x]
File Edit Wiew Simulation Format Tools Help
D|E-”E§|&EE|G==D{HS‘Q|> IIE INl:urmal j|$|ﬂ
Creating Frame-Based Signals Using the Signal From Workspace Block
— ™ — |
£ = £z = = =
[L o
9 1 5 1 1 1
- 10 1 6 1 21
[1:10;110011001 1] SRE — — yout
0 o[|7 o[[3 o -
Wetsoacs 0 0] [8 0] [4 0f s Doc Example
Info
t=8 t=4 t=0
first matrix output
Ready |100% | | [FixedstepDiscrete 5

9 At the MATLAB command line, type yout.
The following is the output displayed at the MATLAB command line.

yout =

1-30

Creating Frame-Based Signals

—
O OO0 WoKNOO”OGPWDN
OO0 -+ -2 00—+ =200 -=

Note that zeros were appended to the end of each channel. You have now

successfully created a two-channel frame-based signal and exported it to the
MATLAB workspace.

1-31

1 Working with Signals

Creating Multichannel Sample-Based Signals

In this section...

“Multichannel Sample-Based Signals” on page 1-32
“Combining Single-Channel Sample-Based Signals” on page 1-32

“Combining Multichannel Sample-Based Signals” on page 1-35

Multichannel Sample-Based Signals

When you want to perform the same operations on several independent
signals, you can group those signals together as a multichannel signal. For
example, if you need to filter each of four independent signals using the
same direct-form II transpose filter, you can combine the signals into a
multichannel signal, and connect the signal to a single Digital Filter Design
block. The block applies the filter to each channel independently.

A sample-based signal with M*N channels is represented by a sequence of
M-by-N matrices. Multiple sample-based signals can be combined into a
single multichannel sample-based signal using the Concatenate block. In
addition, several multichannel sample-based signals can be combined into a
single multichannel sample-based signal using the same technique.

Combining Single-Channel Sample-Based Signals
You can combine individual sample-based signals into a multichannel signal

by using the Matrix Concatenate block in the Simulink Math Operations
library:
1 Open the Matrix Concatenate Example 1 model by typing

doc_cmbsnglchsbsigs

at the MATLAB command line.

1-32

Creating Multichannel Sample-Based Signals

=] doc_cmbsnglchsbsigs - 10| x|

File Edit View Simulation Format Tools Help

DI#H%I%EH%@{HEJQ PII'IE.E INDrrnaI j|$|ﬂ

- In this examgle, the Matrix Concatenste olog combines
|Matr|x Concatenﬂte Exﬂmple 1 four independent sample-based signals inte & multichannsel

sample-besed signal.

1:10

Signal From
Waorkspace

-1:-1:-10

Signal From
Worspace

dsp_sxamples_yout

Yyvd

@ | — | Ra=shsp
1

Rashsap

To Workspace

zeros{10,1) Matrix
Concatenate

Signal From
Workspaos2

B=ones{10,1)

Signal From

Waorkspacel
Doc Example

Info

Maote: This model ocrested worksoace varisoles called "dso_sxamples_yout™

Varigoles will oe cleared when the model is closed.

Ready |100% | | [FixedstepDiscrete v

2 Double-click the Signal From Workspace block, and set the Signal
parameter to 1:10. Click OK.

3 Double-click the Signal From Workspacel block, and set the Signal
parameter to -1:-1:-10. Click OK.

4 Double-click the Signal From Workspace2 block, and set the Signal
parameter to zeros(10,1). Click OK.

5 Double-click the Signal From Workspace3 block, and set the Signal
parameter to 5*ones(10,1). Click OK.

1-33

1 Working with Signals

6 Double-click the Matrix Concatenate block. Set the block parameters as
follows, and then click OK:

* Number of inputs = 4
® Mode = Multidimensional array

¢ Concatenate dimension = 1

7 Double-click the Reshape block. Set the block parameters as follows, and
then click OK:

¢ Output dimensionality = Customize

¢ Output dimensions = [2,2]
8 Run the model.

Four independent sample-based signals are combined into a 2-by-2
multichannel matrix signal.

Each 4-by-1 output from the Matrix Concatenate block contains one sample
from each of the four input signals at the same instant in time. The
Reshape block rearranges the samples into a 2-by-2 matrix. Each element
of this matrix is a separate channel.

Note that the Reshape block works columnwise, so that a column vector
input is reshaped as shown below.

l

) |::> |::; [1 3}
= Reshape)

3 24
il

Rezhape

The 4-by-1 matrix output by the Matrix Concatenate block and the 2-by-2
matrix output by the Reshape block in the above model represent the same
four-channel sample-based signal. In some cases, one representation of the
signal may be more useful than the other.

9 At the MATLAB command line, type dsp_examples_yout.

The four-channel, sample-based signal is displayed as a series of matrices
in the MATLAB Command Window. Note that the last matrix contains

1-34

Creating Multichannel Sample-Based Signals

only zeros. This is because every Signal From Workspace block in this
model has its Form output after final data value by parameter set
to Setting to Zero

Combining Multichannel Sample-Based Signals

You can combine existing multichannel sample-based signals into larger
multichannel signals using the Simulink Matrix Concatenate block:

1 Open the Matrix Concatenate Example 2 model by typing

doc_cmbmltichsbsigs

at the MATLAB command line.

1-35

1 Working with Signals

7] doc_cmbmitichsbsigs -1Oj x|

File Edit WView Simulaton Format Tools Help

DS 2 BER|(Es 4[] p =0 | |Noma T B @S

In this example, the Matrix Concatensts blod combines
two Z-channel sample-based signals inte 8 4-channel
sample-oased signal.

|Matrix Concatenate Example 2

[1:10;-1:-1:-10]

Signal From \—D o et vout
Worspaos , ——— dip_sxamples_you

To Workspace

Matrix
Concatenate

[zeros{10,1) 5*cnes{10,1}]

Signal From
Workspaos1

Coc Example
Maote: This model oested wordsosoes variaoles called "dso_sxamelas_yout™. Info

Variaoles will oe cleared when the model is clossd.

Ready 100%: Fixed5StepDiscrete
d I I I [Fixed 4

2 Double-click the Signal From Workspace block, and set the Signal
parameter to [1:10;-1:-1:-10]"'. Click OK.

3 Double-click the Signal From Workspacel block, and set the Signal
parameter to [zeros(10,1) 5*ones(10,1)]. Click OK.

4 Double-click the Matrix Concatenate block. Set the block parameters as
follows, and then click OK:

¢ Number of inputs = 2

¢ Mode = Multidimensional array

1-36

Creating Multichannel Sample-Based Signals

¢ Concatenate dimension = 1

5 Run the model.

The model combines both two-channel sample-based signals into a
four-channel signal.

Each 2-by-2 output from the Matrix Concatenate block contains both
samples from each of the two input signals at the same instant in time.
Each element of this matrix is a separate channel.

1-37

1 Working with Signals

Creating Multichannel Frame-Based Signals

1-38

In this section...

“Multichannel Frame-Based Signals” on page 1-38
“Combining Frame-Based Signals” on page 1-39

Multichannel Frame-Based Signals

When you want to perform the same operations on several independent
signals, you can group those signals together as a multichannel signal. For
example, if you need to filter each of four independent signals using the
same direct-form II transpose filter, you can combine the signals into a
multichannel signal, and connect the signal to a single Digital Filter Design
block. The block applies the filter to each channel independently.

A frame-based signal with N channels and frame size M is represented by

a sequence of M-by-N matrices. Multiple individual frame-based signals,
with the same frame rate and size, can be combined into a multichannel
frame-based signal using the Simulink Matrix Concatenate block. Individual
signals can be added to an existing multichannel signal in the same way.

1 1 1

2 2 2

3 a 3

4 4 4

5 5 5

G G G
e L

Four frame -hased signals: Multi channel frame-hased signal:
1 thannel ench, 4 thonnels,
6 somples per frome b samples per frome

Creating Multichannel Frame-Based Signals

Combining Frame-Based Signals

You can combine existing frame-based signals into a larger multichannel
signal by using the Simulink Concatenate block. All signals must have
the same frame rate and frame size. In this example, a single-channel
frame-based signal is combined with a two-channel frame-based signal to
produce a three-channel frame-based signal:

1 Open the Matrix Concatenate Example 3 model by typing
doc_combiningfbsigs

at the MATLAB command line.

1-39

1 Working with Signals

File Edit WView Simulaton Format Tools Help

=10l x|

DEeEH&| BR[| 1= 2 » mfoo |Nomal T a3

|I'u"latrix Concatenate Example 3

In this example, the Matrix Concatenate blodk combines
z 2-channel frame-based signal and =2 1-channel frame-bassd

signal into 8 2-channsel frame-based signal.

[1:10;-1:-1:-10]

Signal From
Workspace

5 ones{10,1)

@ — | dsp =xamples_yout

M atriz To Workspace

Concatenate

Signal From
Wordspace1

Ready

Doc Example

Maote: This model oreated workspaoe variaoles called "dso_sxamoles_yout™. Infa

Variaolas will be clearsd whan the model is closad.

|100% | | |[FixedstepDiscrete

2 Double-click the Signal From Workspace block. Set the block parameters

as follows:

e Signal=[1:10;-1:-1:-10]"

* Sample time = 1

* Samples per frame = 4

Based on these parameters, the Signal From Workspace block outputs a
frame-based signal with a frame size of four.

3 Save these parameters and close the dialog box by clicking OK.

1-40

Creating Multichannel Frame-Based Signals

4 Double-click the Signal From Workspacel block. Set the block parameters
as follows, and then click OK:

e Signal = 5*ones(10,1)
* Sample time = 1

® Samples per frame = 4

The Signal From Workspacel block has the same sample time and frame
size as the Signal From Workspace block. When you combine frame-based
signals into multichannel signals, the original signals must have the same
frame rate and frame size.

5 Double-click the Matrix Concatenate block. Set the block parameters as
follows, and then click OK:

¢ Number of inputs = 2
® Mode = Multidimensional array

¢ Concatenate dimension = 2
6 Run the model.

The 4-by-3 matrix output from the Matrix Concatenate block contains all
three input channels, and preserves their common frame rate and frame
size.

1-41

1 Working with Signals

Deconstructing Multichannel Sample-Based Signals

In this section...

“Splitting Multichannel Sample-Based Signals into Individual Signals”
on page 1-42

“Splitting Multichannel Sample-Based Signals into Several Multichannel
Signals” on page 1-45

Splitting Multichannel Sample-Based Signals into
Individual Signals

Multichannel signals, represented by matrices in the Simulink environment,
are frequently used in signal processing models for efficiency and compactness.
Though most of the signal processing blocks can process multichannel signals,
you may need to access just one channel or a particular range of samples in a
multichannel signal. You can access individual channels of the multichannel
signal by using the blocks in the Indexing library. This library includes the
Selector, Submatrix, Variable Selector, Multiport Selector, and Submatrix
blocks.

You can split a multichannel sample-based signal into single-channel
sample-based signals using the Multiport Selector block. This block allows
you to select specific rows and/or columns and propagate the selection to a
chosen output port. In this example, a three-channel sample-based signal is
deconstructed into three independent sample-based signals:

1 Open the Multiport Selector Example 1 model by typing
doc_splitmltichsbsigsind at the MATLAB command line.

1-42

Deconstructing Multichannel Sample-Based Signals

=] doc_splitmitichshsigsind - 10| x|
File Edit “iew Simulation Format Tools Help

DFEHE| »BRR|(E= 4 2@ » =fioe | [Nomal = 5 @

- In this examgple, the Multiport Selector blodk deconstructs
|MUIt|p°rt SEIECtGr Exﬂmple 1 g three-channel sample-based input signal into thres

independent sample-based output signals.

——| dsp_sxamples_yout
Doc Example
Info To Workspace
randn{3,1,10}) _x—r =sl=at ————————— P dsp examples_youtd
Rows
Signal From ke
imren e Multizart To Worspace1
Selector
Jedzp_sxamples_youtd
To Werkspace2
Maote: This model oreated workspaoe variaoles called "dso_sxamoles_yout™.
Varisolas will oe cleared whan the modsl is closed.
Ready |100% | | [FixedStepDiscrate &

2 Double-click the Signal From Workspace block, and set the block
parameters as follows:

e Signal = randn(3,1,10)
¢ Sample time = 1
¢ Samples per frame = 1

Based on these parameters, the Signal From Workspace block outputs a
three-channel, sample-based signal with a sample period of 1 second.

3 Save these parameters and close the dialog box by clicking OK.

1-43

1 Working with Signals

4

5

6

Double-click the Multiport Selector block. Set the block parameters as
follows, and then click OK:

e Select = Rows

¢ Indices to output = {1,2,3}

Based on these parameters, the Multiport Selector block extracts the rows
of the input. The Indices to output parameter setting specifies that row 1
of the input should be reproduced at output 1, row 2 of the input should
be reproduced at output 2, and row 3 of the input should be reproduced

at output 3.

Run the model.
At the MATLAB command line, type dsp_examples_yout
The following is a portion of what is displayed at the MATLAB command
line. Because the input signal is random, your output might be different
than the output show here.
dsp_examples_yout(:,:,1) =
-0.1199
dsp_examples_yout(:,:,2) =
-0.5955
dsp_examples_yout(:,:,3) =

-0.0793

This sample-based signal is the first row of the input to the Multiport
Selector block. You can view the other two input rows by typing
dsp_examples_yout1 and dsp_examples_yout2, respectively.

You have now successfully created three, single-channel sample-based signals
from a multichannel sample-based signal using a Multiport Selector block.

1-44

Deconstructing Multichannel Sample-Based Signals

Splitting Multichannel Sample-Based Signals into
Several Multichannel Signals

Multichannel signals, represented by matrices in the Simulink environment,
are frequently used in signal processing models for efficiency and compactness.
Though most of the signal processing blocks can process multichannel signals,
you may need to access just one channel or a particular range of samples in a
multichannel signal. You can access individual channels of the multichannel
signal by using the blocks in the Indexing library. This library includes the
Selector, Submatrix, Variable Selector, Multiport Selector, and Submatrix
blocks.

You can split a multichannel sample-based signal into other multichannel
sample-based signals using the Submatrix block. The Submatrix block is the
most versatile of the blocks in the Indexing library because it allows arbitrary
channel selections. Therefore, you can extract a portion of a multichannel
sample-based signal. In this example, you extract a six-channel, sample-based
signal from a 35-channel, sample-based signal (5-by-7 matrix):

1 Open the Submatrix Example model by typing doc_splitmltichsbsigsev
at the MATLAB command line.

1-45

1 Working with Signals

E!dnc_spl’rtmﬂ:ichshsigsev ;Igl ﬂ
File Edit WView Simulaton Format Tools Help
D|ﬁﬂ§|é&é|4==b{r|fﬁﬁ 4 l|13.3 IN:::rmaI j|@

The Submatrix blodk extracts the lower right 3-by-2 submatrix

| Smeatnx Example from a 5-by-7 input matrix.

i L 1
al@ | | p———————_.
Ly
Constant -
Dioc Example SuEmaiix Dispizy
Info
L1
Displayt
Copyright 2004-2008 The MathWordks, Inc
Ready |100% | | [FixedstepDiscrete >

2 Double-click the Constant block, and set the block parameters as follows:

¢ Constant value = rand(5,7)

¢ Interpret vector parameters as 1-D = Clear this check box
* Sampling mode = Sample based

e Sample Time = 1

Based on these parameters, the Constant block outputs a constant-valued,
sample-based signal.

3 Save these parameters and close the dialog box by clicking OK.

4 Double-click the Submatrix block. Set the block parameters as follows,
and then click OK:

1-46

Deconstructing Multichannel Sample-Based Signals

* Row span = Range of rows

* Starting row = Index

® Starting row index = 3

¢ Ending row = Last

¢ Column span = Range of columns

e Starting column = Offset from last
® Starting column offset = 1

¢ Ending column = Last

Based on these parameters, the Submatrix block outputs rows three to five,
the last row of the input signal. It also outputs the second to last column
and the last column of the input signal.

1-47

1 Working with Signals

5 Run the model.

E!dnc_spl’rtmlﬁchshsigsev

File Edit View

Simulation Format Tools Help

The model should now look similar to the following figure.

=10l x|

O s H&| $ (== d 2@ r ufon [N

sl e R

| Submatrix Example

fromn a B-by-7 input matrizx.

Ready

The Submatrix blodk extracts the lower right 3-by-2 submatrix

[Tae] | EE|
[Tt | T5E]
Constant |] | 0800 |
Doc Example Supmatrix Dlsplz
Info EacT]
|] | T | =] | |
| T | T | Taa] | SR
| Eses | | 07127] | a7] | R I
| T | T | o] | IEE|
| T | T |] | |
|100% | | [FixedStepDiscrete i

1-48

Notice that the output of the Submatrix block is equivalent to the matrix
created by rows three through five and columns six through seven of the
input matrix.

You have now successfully created a six-channel, sample-based signal from a
35-channel sample-based signal using a Submatrix block.

Deconstructing Multichannel Frame-Based Signals

Deconstructing Multichannel Frame-Based Signals

In this section...

“Splitting Multichannel Frame-Based Signals into Individual Signals” on
page 1-49

“Reordering Channels in Multichannel Frame-Based Signals” on page 1-54

Splitting Multichannel Frame-Based Signals into
Individual Signals

Multichannel signals, represented by matrices in the Simulink environment,
are frequently used in signal processing models for efficiency and compactness.
Though most of the signal processing blocks can process multichannel signals,
you may need to access just one channel or a particular range of samples in a
multichannel signal. You can access individual channels of the multichannel
signal by using the blocks in the Indexing library. This library includes the
Selector, Submatrix, Variable Selector, Multiport Selector, and Submatrix
blocks. It is also possible to use the Permute Matrix block, in the Matrix
operations library, to reorder the channels of a frame-based signal.

You can use the Multiport Selector block in the Indexing library to extract the
individual channels of a multichannel frame-based signal. These signals form
single-channel frame-based signals that have the same frame rate and size
of the multichannel signal.

1-49

1 Working with Signals

The figure below is a graphical representation of this process.

1 1 1 1
a2 2 2 2
P P P
Select _-i 3 3 = &
Columns : 4 4 4 4
Molticart 8] S]
S=lector =] B [=]
sig 1 sig2 sig3 sigd
Multichannel frame-based signal: Four frame-based signals:
4 channels, 1 channel each,
6 samples per frame 6 samples per frame

In this example, you use the Multiport Selector block to extract a
single-channel and a two channel frame-based signal from a multichannel
frame-based signal:

1 Open the Multiport Selector Example 2 model by typing
doc_splitmltichfbsigsind

at the MATLAB command line.

1-50

Deconstructing Multichannel Frame-Based Signals

=] doc_splitmitichfbsigsind =10l x|
File Edit Wiew Simulation Format Tools Help

DSE&| ¢ B | r oo [vome = Ze B S e

In this example, the Multipod Selector blodk deconstructs
the 3-channel frame-based input signal inte a two
frame-based output signals (1-channel and 2-channel).

Multiport Selector Example 2

Coc Example

Info W d=p_examples_yout
110,11 1050 nesp oy LS g SEkRCt o o Warkspacs
(100121105 e ne=(1,101 Columns 421

Signal Fom
Wiakspace Pl it 1] d=sp_exarmples_yout]
Selkctor

To Workspaced

Maote: Thiz model creates wokspace variables called "dzp_examples_yout" and "dsp_examples_youtd".

Ready 100%: FixedstepDiscrete
o

2 Double-click the Signal From Workspace block, and set the block
parameters as follows:

e Signal=[1:10;-1:-1:-10;5*0ones(1,10)]"'

e Samples per frame = 4

Based on these parameters, the Signal From Workspace block outputs a
three-channel, frame-based signal with a frame size of four.

3 Save these parameters and close the dialog box by clicking OK.

1-51

1 Working with Signals

1-52

4 Double-click the Multiport Selector block. Set the block parameters as

follows, and then click OK:

® Select = Columns

¢ Indices to output = {[1 31,2}

Based on these parameters, the Multiport Selector block outputs the first
and third columns at the first output port and the second column at the

second output port of the block. Setting the Select parameter to Columns
ensures that the block preserves the frame rate and frame size of the input.

Run the model.

The figure below is a graphical representation of how the Multiport
Selector block splits one frame of the three-channel frame-based signal into
a single-channel signal and a two-channel signal.

Deconstructing Multichannel Frame-Based Signals

E!duc_splil:mll:ichfhsigsind i3 ;Iglil

File Edit Wiew Simulation Format Tools Help

DeE& e[y s jund ~||HEBDEy wEB T @

In this example, the Multiport Selector block deconstructs
the 3-channel frame-based input signal into a o
frame-bazed output signals {1-channel and 2-channel).

Multiport Selector Example 2

15
Doc Example 25
Info 1-15 35 ﬁ’ue dsp_examples_yout
2-25 Ll_ 45 To ‘Woarkspace
AR AR e MRS Select - P
[1:10;-1:-1:10;5*ane=(1,10)] —— 31.35 = Colurmne it)
Signal From
445 ot —l_l_ -1 4 N
Wit rhes ultipart Sp_examples_yout
nERacs Selkctor -2 W’
To Warkspace1
-3
~4

3-channel frame-based signal

2-channel frame-based signal (top) and
1-channel frame-based signal (botiom)

Maote: This model creates wokspace variables called "dzp_examples_yout" and "dsp_examples_yout".

Ready [100% | | |FixedstepDiscrete 4

The Multiport Selector block outputs a two-channel frame-based signal,
comprised of the first and third column of the input signal, at the first port. It
outputs a single-channel frame-based signal, comprised of the second column
of the input signal, at the second port.

1-53

1 Working with Signals

1-54

You have now successfully created a single-channel and a two-channel
frame-based signal from a multichannel frame-based signal using the
Multiport Selector block.

Reordering Channels in Multichannel Frame-Based
Signals

Multichannel signals, represented by matrices in Simulink, are frequently
used in signal processing models for efficiency and compactness. Though
most of the signal processing blocks can process multichannel signals, you
may need to access just one channel or a particular range of samples in a
multichannel signal. You can access individual channels of the multichannel
signal by using the blocks in the Indexing library. This library includes the
Selector, Submatrix, Variable Selector, Multiport Selector, and Submatrix
blocks. It is also possible to use the Permute Matrix block, in the Matrix
operations library, to reorder the channels of a frame-based signal.

Some Signal Processing Blockset blocks have the ability to process the
interaction of channels. Typically, Signal Processing Blockset blocks compare
channel one of signal A to channel one of signal B. However, you might want
to correlate channel one of signal A with channel three of signal B. In this
case, in order to compare the correct signals, you need to use the Permute
Matrix block to rearrange the channels of your frame-based signals. This
example explains how to accomplish this task:

1 Open the Permute Matrix Example model by typing
doc_reordermltichfbsigs at the MATLAB command line.

Deconstructing Multichannel Frame-Based Signals

=] doc_reordermitichfbsigs -1Oj x|

Simulation Format Tools Help

File Edit View

D@EEHES| 28| Es 4[] p =0 | [Noma

|Permute Matrix Example In this example, the Permute Matrix blodk
swaps channel 2 and channel 3 of the input
signal.
(1101110 E e (10— A
- n: _ F—— | rout
Signal From | F Solumng yed
Wimreso
Worspace Ferrmuie Signal Te
Matrix Workspace
139
Constant
Doc Example
Info
Ready [100% | | |ode4s 5

2

3

Double-click the Signal From Workspace block, and set the block
parameters as follows:

e Signal=[1:10;-1:-1:-10;5*0ones(1,10)]"'
¢ Sample time = 1

¢ Samples per frame = 4

Based on these parameters, the Signal From Workspace block outputs a
three-channel, frame-based signal with a sample period of 1 second and a
frame size of 4. The frame period of this block is 4 seconds.

Save these parameters and close the dialog box by clicking OK.

1-55

1 Working with Signals

1-56

4 Double-click the Constant block. Set the block parameters as follows, and

then click OK:

e Constant value = [1 3 2]

* Interpret vector parameters as 1-D = Clear this check box
* Sampling mode = Frame based

* Frame period = 4
The discrete-time, frame-based vector output by the Constant block tells
the Permute Matrix block to swap the second and third columns of the

input signal. Note that the frame period of the Constant block must match
the frame period of the Signal From Workspace block.

Double-click the Permute Matrix block. Set the block parameters as
follows, and then click OK:

* Permute = Columns

¢ Index mode = One-based

Based on these parameters, the Permute Matrix block rearranges the
columns of the input signal, and the index of the first column is now one.

6 Run the model.

The figure below is a graphical representation of what happens to the first
input frame during simulation.

Deconstructing Multichannel Frame-Based Signals

E!dnc_renrdermltichfhsigs &
File Edit Wiew Simulation Format Tools Help

=10l x|

hleE&| » 2Rz

b n

[10.0

I Maormal

N EsRE s REE

Permute Matrix Example I

_1)

2-25

In this example, the Permute hdatrix blodk
awaps channel 2 and channel 3 of the input

signal.

15

Feady

15 _1

[1:10;-1:-1:105%0nest, 10j FEEL 3 35 —% e |y 25 -2
Signal Fom - _ Columns 3 5 _3 = yout
x
Herpase 4 _4 5 Pe mute Signal To
- - Mz _4 3] —41 o tksp ace
1oz o2y pEl
Constant
Doz Example
Info
100% | | |ode45

The second and third channel of the frame-based input signal are swapped.

7 At the MATLAB command line, type yout.

You can now verify that the second and third columns of the input signal

are rearranged.

You have now successfully reordered the channels of a frame-based signal

using the Permute Matrix block.

1-57

1 Working with Signals

Importing and Exporting Sample-Based Signals

In this section...

“Importing Sample-Based Vector Signals” on page 1-58
“Importing Sample-Based Matrix Signals” on page 1-61
“Exporting Sample-Based Signals” on page 1-65

Importing Sample-Based Vector Signals

The Signal From Workspace block generates a sample-based vector signal
when the variable or expression in the Signal parameter is a matrix and the
Samples per frame parameter is set to 1. Each column of the input matrix
represents a different channel. Beginning with the first row of the matrix, the
block outputs one row of the matrix at each sample time. Therefore, if the
Signal parameter specifies an M-by-N matrix, the output of the Signal From
Workspace block is M 1-by-N row vectors representing N channels.

1-58

Importing and Exporting Sample-Based Signals

The figure below is a graphical representation of this process for a 6-by-4

workspace matrix, A.

1o

Signal From
Wiafespass

J L

H
H

thl th2 ch3 chd

MATLAB workspace matrix, A:
4 chonnels, 6 somples ench

somple Eu
sample 5
somple 4
s 2 [EZ =]
somple 1

thl th? th3 chd
Sample-hased vector signal:
4 thonnek

In the following example, you use the Signal From Workspace block to import
a sample-based vector signal into your model:

1 Open the Signal From Workspace Example 3 model by typing
doc_importsbvectorsigs at the MATLAB command line.

1-59

Working with Signals

~=10] x|

File Edit View Simulation Format Tools Help

D@ & & BER (e =22 r 500 | [Noma Cl ZE B

< In this example, the Signal From Worispace blod imports
| Signal From Workspace Example 3

a three-channel sample-based signal comprising twe channels

from worspace matrix "dsp_examples_A" and one channel frem
workspace column vector "dsp_examples_B".

|dsp_sxamples_A dsp_examples B] — [dsp_examples yout

Signal From To Workspaos
Workspaos Doc Example
Info
Mote: This model crested worksgaoe variaoles called "dsg_exeamples_A°, "dsg_sexsmgples_B, and "dso_sxamgoles yout'.
WVarisoles will o2 clesrad when the model is clossd,
Ready [100% | | [FixedstepDiscrets 5

2 At the MATLAB command line, type A = [1:100;-1:-1:-100]1";

The matrix A represents a two column signal, where each column is a
different channel.

3 At the MATLAB command line, type B = 5%ones(100,1);
The vector B represents a single-channel signal.

4 Double-click the Signal From Workspace block, and set the block
parameters as follows:

e Signal = [A B]
¢ Sample time = 1
¢ Samples per frame = 1

¢ Form output after final data value = Setting to zero

Importing and Exporting Sample-Based Signals

The Signal expression [A B] uses the standard MATLAB syntax for
horizontally concatenating matrices and appends column vector B to the
right of matrix A. The Signal From Workspace block outputs a sample-based
signal with a sample period of 1 second. After the block has output the
signal, all subsequent outputs have a value of zero.

5 Save these parameters and close the dialog box by clicking OK.
6 Run the model.

The following figure is a graphical representation of the model’s behavior
during simulation.

me H™l 4 4s57— (3 ca5]— (2 -2 5]—[1 -1 5] —m yout
Signal From =3 t=1 t=1 =0 To Warkspace
Wiotesp ace

Four comse cutive som ples from o
3-chonnel sample-bosed signal

The first row of the input matrix [A B] is output at time t=0, the second
row of the input matrix is output at time t=1, and so on.

You have now successfully imported a sample-based vector signal into your
signal processing model using the Signal From Workspace block.

Importing Sample-Based Matrix Signals

The Signal From Workspace block generates a sample-based matrix

signal when the variable or expression in the Signal parameter is a
three-dimensional array and the Samples per frame parameter is set to 1.
Beginning with the first page of the array, the block outputs a single page
of the array to the output at each sample time. Therefore, if the Signal
parameter specifies an M-by-N-by-P array, the output of the Signal From
Workspace block is P M-by-N matrices representing M*N channels.

1-61

1 Working with Signals

1-62

The following figure is a graphical illustration of this process for a 6-by-4-by-5

workspace array A.

A

Signal Fom
Wiio respasa

o

q
H
g

ﬁ
]
]
t]
%

d
g
g
]
7

‘
¢l
&
]

d ' W
i I I L
S]
d i ..

MATLAB workspace array, A:

24 thonnels, 1 somple each

somple 3

somple 2

sumple 1

Sample-based matrix signal:
24 thonnels

In the following example, you use the Signal From Workspace block to import
a four-channel, sample-based matrix signal into a Simulink model:

1 Open the Signal From Workspace Example 4 model by typing
doc_importsbmatrixsigs at the MATLAB command line.

Importing and Exporting Sample-Based Signals

E!dm:_impurtshmatriusigs

File Edit Wiew Simulation Format Tools Help

=101 x|

LhlzE& &

B W =2 2| p om0

IN-:nrmaI

"dzp_examples_ A"
"dsp_examples_sigl"
"d=p_examples_sig3"
"dsp_examples_sigl2"

Ready

Signal From Workspace Example 4 I

Signal Fom
Wi rkspace

Mote: This model created the following watepace variables:

"dzp_examples_yout"
"dsp_examples_sig2"
"dsp_examples_sigd"
"dsp_examples_sig3d"

dsp_examplkes_A @—F

In this example, the Signal From Wotspace block imports 3
dchannel sample-based matrix signal from wotspace array
"dsp_examples A",

dsp_examples_yout

To Workspace

Doc

Example
Info

100%
| |

FixedStepDiscrete

Also, the following variables are loaded into the MATLAB workspace:

Fs

dsp_examples_A
dsp_examples_sig1
dsp_examples_sigi2
dsp_examples_sig2
dsp_examples_sig3

dsp_examples_sig34

1x1

2x2x100
1x1x100
1x2x100
1x1x100
1x1x100
1x2x100

8
3200
800
1600
800
800
1600

double
double
double
double
double
double
double

array
array
array
array
array
array

array

1-63

1 Working with Signals

dsp_examples_sig4 1x1x100 800 double array
mtlb 4001x1 32008 double array

2 Double-click the Signal From Workspace block. Set the block parameters
as follows, and then click OK:

e Signal = dsp_examples_A
* Sample time = 1
e Samples per frame = 1

¢* Form output after final data value = Setting to zero

The dsp_examples_A array represents a four-channel, sample-based signal
with 100 samples in each channel. This is the signal that you want to
import, and it was created in the following way:

dsp_examples_sigl = reshape(1:100,[1 1 100])
dsp_examples_sig2 = reshape(-1:-1:-100,[1 1 100])
dsp_examples_sig3 zeros(1,1,100)
dsp_examples_sig4 = 5*ones(1,1,100)
dsp_examples_sigl12 = cat(2,sig1,sig2)
dsp_examples_sig34 = cat(2,sig3,sig4)
dsp_examples_A = cat(1,sig12,sig34) %

2-by-2-by-100 array

3 Run the model.

The figure below is a graphical representation of the model’s behavior
during simulation.

1-64

Importing and Exporting Sample-Based Signals

5] doc_importsbmatrixsigs * =10 %

File Edit Wiew Simulation Format Tools Help

DeH&| & B2R|D PII1E|.|:I IN-:nrmaI e E e RE

. I In this example, the Signal From Wotspace block imports 3
Slgnal Frﬂm wnrkspace Example 4 dchannel sample-based matrix signal from wotspace array

"dsp_examples A",

4 -4 3 - 2 - -1
22
d=p_examples_A (=<3 — — — — d=p_examples_yout
PSR 0 5} [n 5} [c: 5] [n 5 P
Signal Fom To Wior=space
Workspace 1=3 1=2 1=1 10
first motix oulput
Mote: This model created the following watepace variables:
"dzp_examples_ A" "dzp_examples_yout"
"dsp_examples_sig1" "dsp_examples_sig2" . Dioc Example
"dep_examples sig2" "dsp_examples_sigd" Four conseculive EUHIF‘ES f"l“ a Info

"dsp_examples_sigl2" "dsp_examples_sig3d" 4‘d'll:|mE| sumﬂ &hmed EingJI

Ready 100%: FixedStepliscrete
v

The Signal From Workspace block imports the four-channel sample based
signal from the MATLAB workspace into the Simulink model one matrix at
a time.

You have now successfully imported a sample-based matrix signal into your
model using the Signal From Workspace block.

Exporting Sample-Based Signals

The Signal To Workspace and Triggered To Workspace blocks are the primary
blocks for exporting signals of all dimensions from a Simulink model to the
MATLAB workspace.

1-65

1 Working with Signals

A sample-based signal, with M*N channels, is represented in Simulink as a
sequence of M-by-N matrices. When the input to the Signal To Workspace
block is a sample-based signal, the block creates an M-by-N-by-P array in
the MATLAB workspace containing the P most recent samples from each
channel. The number of pages, P, is specified by the Limit data points to
last parameter. The newest samples are added at the end of the array.

The following figure is the graphical illustration of this process using a 6-by-4
sample-based signal exported to workspace array A.

Samplo-based matrix signal: MATLAB workspace array, A:
6-by-4 {24 channels) 6-by-4-by-P (24 channels, P =5}

The workspace array always has time running along its third dimension, P.
Samples are saved along the P dimension whether the input is a matrix,
vector, or scalar (single channel case).

In the following example you use a Signal To Workspace block to export a
sample-based matrix signal to the MATLAB workspace:

1-66

Importing and Exporting Sample-Based Signals

1 Open the Signal From Workspace Example 6 model by typing
doc_exportsbsigs at the MATLAB command line.

=] doc_exportshsigs =10l x|
File Edit Wiew Simulation Format Tools Help
D SHE| $EBER|(E 4|5 2> mfiooe | [Noma S BsR e
. In this example, the Signal From Workspace blodk imports a
| Slgnﬂl Frﬂm Workspace Example E 4-channel sample-based matrix signal from workspace amray
dsp_examplas_A"
dsp_examplas_A | dsp_examples_yout
Signal From Signsl To
Workspace Workspaos
Maote: This model orested the following wordsoaoe variables:
dsp_sxamoles_A dsp_sxamglas_yout
dzo_sxamples_sigl dzo_sxamoles_sigl
dso_examoles_sigd dso_sxamoles_sigd
dsop_examplas_sigl2 dso_sxamolas_sigls
Varizzles will oe cleared whan the maodsl iz clossd. Dioc Example
Info
Ready [100% | | [FixedstepDiscrete 5

Also, the following variables are loaded into the MATLAB workspace:

dsp_examples_A 2x2x100 3200 double array
dsp_examples_sig1 1x1x100 800 double array
dsp_examples_sig12 1x2x100 1600 double array
dsp_examples_sig2 1x1x100 800 double array
dsp_examples_sig3 1x1x100 800 double array

1-67

1 Working with Signals

1-68

dsp_examples_sig34 1x2x100 1600 double array
dsp_examples_sig4 1x1x100 800 double array

In this model, the Signal From Workspace block imports a four-channel
sample-based signal called dsp_examples_A. This signal is then exported
to the MATLAB workspace using a Signal to Workspace block.

Double-click the Signal From Workspace block. Set the block parameters
as follows, and then click OK:

e Signal = dsp_examples_A
e Sample time = 1
¢ Samples per frame = 1

¢ Form output after final data value = Setting to zero

Based on these parameters, the Signal From Workspace block outputs a
sample-based signal with a sample period of 1 second. After the block has
output the signal, all subsequent outputs have a value of zero.

Double-click the Signal To Workspace block. Set the block parameters as
follows, and then click OK:

® Variable name = dsp_examples_yout

¢ Limit data points to last parameter to inf

®* Decimation = 1

Based on these parameters, the Signal To Workspace block exports its
sample-based input signal to a variable called dsp_examples_yout in the
MATLAB workspace. The workspace variable can grow indefinitely large

in order to capture all of the input data. The signal is not decimated before
it is exported to the MATLAB workspace.

4 Run the model.

5 At the MATLAB command line, type dsp_examples_yout.

The four-channel sample-based signal, dsp_examples_A, is output at the
MATLAB command line. The following is a portion of the output that is
displayed.

Importing and Exporting Sample-Based Signals

dsp_examples_yout(:,:,1) =

1 -1
0

dsp_examples_yout(:,:,2) =

2 -2
0 5

dsp_examples_yout(:,:,3) =

3 -3
0 5

dsp_examples_yout(:,:,4) =

4 -4
0 5

Each page of the output represents a different sample time, and each element
of the matrices is in a separate channel.

You have now successfully exported a four-channel sample-based signal from

a Simulink model to the MATLAB workspace using the Signal To Workspace
block.

1-69

1 Working with Signals

Importing and Exporting Frame-Based Signals

In this section...

“Importing Frame-Based Signals” on page 1-70

“Exporting Frame-Based Signals” on page 1-73

Importing Frame-Based Signals

The Signal From Workspace block creates a frame-based multichannel signal
when the Signal parameter is a matrix, and the Samples per frame
parameter, M, is greater than 1. Beginning with the first M rows of the
matrix, the block releases M rows of the matrix (that is, one frame from each
channel) to the output port every M*T, seconds. Therefore, if the Signal
parameter specifies a W-by-N workspace matrix, the Signal From Workspace
block outputs a series of M-by-IN matrices representing N channels. The
workspace matrix must be oriented so that its columns represent the channels
of the signal.

The figure below is a graphical illustration of this process for a 6-by-4
workspace matrix, A, and a frame size of 2.

simple 5 | 8
simple 6 | &

4 I sample 3
sample 4

Signal Fom

NHIEE
oajaa
=[] =]~
BlE

o rspace somple 1 § 1
sample 2 | 2
thl th? th3 ché
MATLAB workspace mairix, A: Frame-hased signal:
4 thonnels, 6 samples enth 4 chonnels, 2 somples per frame

1-70

Importing and Exporting Frame-Based Signals

Note Although independent channels are generally represented as columns,
a single-channel signal can be represented in the workspace as either a
column vector or row vector. The output from the Signal From Workspace
block is a column vector in both cases.

In the following example, you use the Signal From Workspace block to create
a three-channel frame-based signal and import it into the model:

1 Open the Signal From Workspace Example 5 model by typing
doc_importfbsigs
at the MATLAB command line.

dsp_examples_ A = [1:100;-1:-1:-100]"'; % 100-by-2 matrix
dsp_examples_B 5*ones(100,1); % 100-by-1 column vector

The variable called dsp_examples_A represents a two-channel signal
with 100 samples, and the variable called dsp_examples_B represents a
one-channel signal with 100 samples.

Also, the following variables are defined in the MATLAB workspace:

1-71

1 Working with Signals

1-72

E!duc_impurtfhsigs

Wiew Simulation Format Tools Help

File Edit

=10l x|

DEE&| FER |2 2 sfoo |[Nmd ~ DB mBE T

In this example, the Signal From Wotspace blodk imports

|S|gnal Frﬂm Workspace Example 5 I a three-channel frame-based signal comprizing two channels

Feady

from wotspace matrix: "dsp_examples_A" and one channel from
wofEpace column wector "dsp_examples B".

[d=sp_examples_A dsp_sxamples_E] [43] P dsp_examples_yout
Signal Fom To Workspace
o tkspane Doc Example

Info

Miote: This model creates wokspace variables called "dsp_examples A", "dsp_examples_B", and "dsp_sexamples_yout'.

100%: FixedStepDiscrete
| | | |

2 Double-click the Signal From Workspace block. Set the block parameters

as follows, and then click OK:

® Signal parameter to [dsp_examples A dsp_examples_B]
* Sample time parameter to 1

e Samples per frame parameter to 4

* Form output after final data value parameter to Setting to zero

Based on these parameters, the Signal From Workspace block outputs

a frame-based signal with a frame size of 4 and a sample period of 1
second. The signal’s frame period is 4 seconds. The Signal parameter
uses the standard MATLAB syntax for horizontally concatenating
matrices to append column vector dsp_examples_B to the right of matrix
dsp_examples_A. After the block has output the signal, all subsequent
outputs have a value of zero.

Importing and Exporting Frame-Based Signals

3 Run the model.

The figure below is a graphical representation of how your three-channel,
frame-based signal is imported into your model.

E! doc_importfbsigs * ;lgl ﬂ

File Edit Wiew Simulakion Format Tools Help

Dlﬁﬂ@h‘ﬂ:ﬁlfﬁfﬂb II1D.EI INDrma| j|@lﬁl|n@?®

B In thiz example, the Signal From Wokspace block imports
|S|gnal From workspace Example 5 I a three-channel frame-baszed signal comprising two channels

from wortspace matrix "dsp_examples_A" and ane channel fram
wofepace column wactor"dsp_e=amples_B".

9 9 5 3335 1-15
- — 2-15
[d=p_examples_A dsp_examples_E]] |l0-l05) {665 —{ d=sp_examples_yaut
11-115 T-75 335
S IF _ — To Winrkspace
W%T.?Sp;;n 12125 b=kl 2 443 Doc IExfample
1=8 1=4 10 e

Mote: Thiz model creates wokspace variables called "dzp_sxamples_ A", "dzp_sxamples B", and "dsp_examples_yout'.

Ready 100% FixedstepDiscrete
A

You have now successfully imported a three-channel frame-based signal into
your model using the Signal From Workspace block.

Exporting Frame-Based Signals

The Signal To Workspace and Triggered To Workspace blocks are the primary
blocks for exporting signals of all dimensions from a Simulink model to the
MATLAB workspace.

A frame-based signal with N channels and frame size M is represented by a
sequence of M-by-N matrices. When the input to the Signal To Workspace
block is a frame-based signal, the block creates a P-by-N array in the MATLAB
workspace containing the P most recent samples from each channel. The
number of rows, P, is specified by the Limit data points to last parameter.
The newest samples are added at the bottom of the matrix.

1-73

1 Working with Signals

The following figure is a graphical illustration of this process for three
consecutive frames of a frame-based signal with a frame size of 2 that is
exported to matrix A in the MATLAB workspace.

somple 3 n ol yout
(4§ WAl fsompled :
Signsl To

10

=H B S ELE g
SR 6
thl th2 th3 che
Frame hased signal: MATLAB workispace matrix, A:
4 thonnels

4 channels, 2som ples per frome

In the following example, you use a Signal To Workspace block to export a
frame-based signal to the MATLAB workspace:

1 Open the Signal From Workspace Example 7 model by typing
doc_exportfbsigs at the MATLAB command line.

1-74

Importing and Exporting Frame-Based Signals

=1olx|

File Edit Wiew Simulation Format Tools Help

ODSE&| L=z sfon v ~Be@BEy BEBE

- In this example, the Signal From Wortkspace blodk imparts
SlgnEI' Frﬂm Wﬂrkspace Example T I a three-channel frame-based signal comprizing twe channels
fram wotspace matrix "dsp_examples_A" and one channel from
makspace column vectar "dsp_examples_B".

[dsp_examples_A dsp_examplks_E] [4x3) Je{ dsp_examples_yout
Signal Fom Signal To
Yo rkspace Workspace Doc Example

Info

Maote: This model creates wokspace variables called "d=p_examples_A", "dsp_examples_B", and "dsp_examples_yout'.

Ready 100%: FixedStepliscrete
v

Also, the following variables are defined in the MATLAB workspace:

The variable called dsp_examples_A represents a two-channel signal
with 100 samples, and the variable called dsp_examples_B represents a
one-channel signal with 100 samples.

dsp_examples_A
dsp_examples_B

[1:100;-1:-1:-100]1"'; % 100-by-2 matrix
5*ones(100,1); % 100-by-1 column vector

2 Double-click the Signal From Workspace block. Set the block parameters
as follows, and then click OK:

® Signal = [dsp_examples_A dsp_examples_B]
* Sample time = 1
* Samples per frame = 4

* Form output after final data value = Setting to zero

1-75

1 Working with Signals

Based on these parameters, the Signal From Workspace block outputs

a frame-based signal with a frame size of 4 and a sample period of 1
second. The signal’s frame period is 4 seconds. The Signal parameter
uses the standard MATLAB syntax for horizontally concatenating
matrices to append column vector dsp_examples_B to the right of matrix
dsp_examples_A. After the block has output the signal, all subsequent
outputs have a value of zero.

3 Double-click the Signal To Workspace block. Set the block parameters as
follows, and then click OK:

® Variable name = dsp_examples_yout
¢ Limit data points to last = inf
®* Decimation = 1

¢ Frames = Concatenate frames (2-D array)

Based on these parameters, the Signal To Workspace block exports its
frame-based input signal to a variable called dsp_examples_yout in the
MATLAB workspace. The workspace variable can grow indefinitely large
in order to capture all of the input data. The signal is not decimated before
it is exported to the MATLAB workspace, and each input frame is vertically
concatenated to the previous frame to produce a 2-D array output.

4 Run the model.

The following figure is a graphical representation of the model’s behavior
during simulation.

1-76

Importing and Exporting Frame-Based Signals

E!duc_expurtfhsigs * ;IEIEI

File Edit ‘Wiew Simulation Format Tools Help

D& BR[| r sfios |omd ~|BBEe REER T ®

. In thiz example, the Signal From Wokspace blodk imports
‘Slgnal From workspace Example T I a three-channel frame-based signal comprising dwa channels

from wokepace matrix"dsp_examples A" and ane channel from
wiohspace column wvector"dsp_examples_B".

9 -9 5 5355 1-15
lo-105 6 -6 5 225
[dsp_examples_A dsp_examples_B] [[4e3] — — — dzp_examples yout
11 -115 T-75 335
Signal From 12-12 5 E-8 3 4 43 Zignal Te Coc Exarmple
Warkspace Watksp ace Infa
1=8 =4 =0

Maote: This model creates wokspace variables called "dsp_examples A", "dsp_examples B", and "dsp_examples_wout'.

Ready 100% FixedstepDiscrete
A

5 At the MATLAB command line, type dsp_examples_yout.
The output is shown below:

dsp_examples_yout =

-1
-2
-3
-4
-5
-6
-7
-8
-9

-10

1 11

12 -12

0N O~ ON =

©

—
o
g o000 oo g oo

1-77

1 Working with Signals

The frames of the signal are concatenated to form a two-dimensional array.

You have now successfully output a frame-based signal to the MATLAB
workspace using the Signal To Workspace block.

1-78

Displaying Time-Domain Data

Displaying Time-Domain Data

You can use Signal Processing Blockset blocks to work with signals in both
the time and frequency domain. The Signal Processing Sinks library contains
the following blocks for displaying time-domain signals:

* Time Scope

® Vector Scope

® Matrix Viewer

e Waterfall Scope

See the following sections for examples of how you can use the Vector Scope
and Time Scope blocks to display time-domain data:

¢ “Displaying Time Domain Data in the Vector Scope” on page 1-79

¢ “Displaying Time-Domain Data in the Time Scope” on page 1-82

Displaying Time Domain Data in the Vector Scope

The following example shows you how you can use the Vector Scope block to
display time-domain signals:

1 At the MATLAB command prompt, type doc_vectorscope_tut.

The Vector Scope Example opens and the variables Fs and mt1b are loaded
into the MATLAB workspace.

1-79

1 Working with Signals

E!duc_vectnrscnpe_tut O] x|

File Edit “iew Simulation Format Tools Help

0| @ HE | LB 4 (@& r o [Nomal R R e

In this example, the Vector =z
signal. At any given time, t

g3ch signal.

= blodk displays s two-channel frame-bas
lay contzins twe consecutive frames of

X

5
h

|‘u‘ectur Scope Example

= Q50

[1Bx1] |
Signal Fram [1851] 2 Tims

FOATool
Workspaos rem hatrix Viector
T Eet T . - Co e = -
[18:1] Concatenate Socope

Digital

Filter Design
Maote: This model oreates wordspaoe variables called "mils” and "Fs
Ready |100% | | [FixedstepDiscrete

2 Double-click the Signal From Workspace block. The Block Parameters:
Signal From Workspace dialog box opens.

3 Set the block parameters as follows:
e Signal = mtlb
* Sample time = 1
e Samples per frame = 16

¢ Form output after final data value = Cyclic Repetition

Based on these parameters, the Signal From Workspace block outputs a

frame-based signal with a frame size of 16 and a sample period of 1 second.

The frame period of the signal is 16 seconds. Your input signal is output
repeatedly from the Signal From Workspace block.

1-80

Displaying Time-Domain Data

4 Save these parameters and close the dialog box by clicking OK.
5 Double-click the Digital Filter Design block.

You are going to use this block to filter the input signal in order to produce
two distinct signals to send to the Vector Scope block.

6 To specify a lowpass filter, in the Response Type section, choose Lowpass.

7 In the Design Method section, choose FIR. Then, from the list, select
Window.

8 In the Filter Order section, select Specify order and enter 22.
9 From the Window list, select Hamming.

10 In the Frequency Specifications section, from the Units list, select
Normalized (0 to 1).

11 In the Frequency Specifications section, set the we parameter to 0.25.

12 Click Design Filter. Then, close the Block Parameters: Digital Filter
Design dialog box.

13 Double-click the Matrix Concatenate block. The Function Block
Parameters: Matrix Concatenate dialog box opens.

14 Set the block parameters as follows:
¢ Number of inputs = 2
® Mode = Multidimensional array.

¢ Concatenate dimension =2

Based on these parameters, the Matrix Concatenate block combines the
two signals so that each column corresponds to a different signal.

15 Save these parameters and close the dialog box by clicking OK.
16 Double-click the Vector Scope block.

17 Set the block parameters as follows, and then click OK:

1-81

1 Working with Signals

® (Click the Scope Properties tab.
¢ Input domain = Time

¢ Time display span (number of frames) = 2

When you run the model, the Vector Scope block plots two consecutive
frames of each channel at each update.

18 Run the model.

The Vector Scope window displays the original signal in blue and the
filtered signal in black. To display the channel legend, right-click inside of
the Vector Scope window and select Channel legend from the menu.

You have now successfully displayed two frame-based signals in the time
domain using the Vector Scope block.

Displaying Time-Domain Data in the Time Scope

The following example shows you how to configure the Time Scope blocks in
the doc_timescope_tut model to display time-domain signals.

1-82

Displaying Time-Domain Data

1=k
File Edit “iew Simulabtion Format Tools Help
DEEES| L BB 4 |2 o noma R N
Nl — T
Random Crigital Filtar- Highpas= m
Source a . anp h— Digital
Filter ™ Time
Time
|IJ—|_|DSF' Digital Filter- Lowpass Scope
Y. "I
Sine WMiave
Add
P
Time
Time
Scope
Ready |100% | | [FixedstepDiscrete i

The Time Scope — Configuration dialog box provides a central location
from which you can change the appearance and behavior of the Time Scope
block. To open the Time Scope — Configuration dialog box, double-click the
Time Scope block in your model and select File > Configuration.

1-83

1 Working with Signals

= J: Time Scope - Configuration il

Core | Yiswals I Toals I

Name Description

General I Scope user interface settings

Cpkions ... | Ik Cancel Apply

The Time Scope — Configuration dialog box has three different tabs, Core,
Visuals, and Tools, each of which offers you a different set of options. For
more information about the options available on each of the tabs, see the
Time Scope reference page.

Example Workflow

Use the following workflow to configure the Time Scope blocks in the
doc_timescope_ tut model:

1 “Configuring the Time Scope” on page 1-85

2 “Using the Playback Controls” on page 1-89

3 “Modifying the Scope Display” on page 1-91

4 “Inspecting Your Data (Scaling the Axes and Zooming)” on page 1-94
5 “Managing Multiple Time Scopes” on page 1-97

To get started with this example, open the model by typing doc_timescope_tut
at the MATLAB command line.

1-84

Displaying Time-Domain Data

Configuring the Time Scope

To open the Time Scope — Configuration dialog box, you must first open the
Time Scope window by double-clicking the Time Scope block in your model.
When the window opens, select File > Configuration.

First, you configure the appearance of the Time Scope window and specify
how the Time Scope block should interpret input signals using the Time
Scope - Visuals:Time Domain Options dialog box.

Note As you progress through this workflow, notice the blue question mark

icon (J) in the lower-left corner of the subsequent dialog boxes. This
icon indicates that context-sensitive help is available. You can get more
information about any of the parameters on the dialog box by right-clicking
the parameter name and selecting What’s This?

Configuring Appearance and Specifying Signal Interpretation. To
configure the appearance of the Time Scope window and specify how the Time
Scope block interprets input signals:

1 Click the Visuals tab of the main Time Scope — Configuration dialog
box.

2 Select Time Domain, and click the Options button.

The following options dialog box appears.

1-85

1 Working with Signals

«): Time Scope - Yisuals:Time Domain Options 5[

Main I Axis Properties I

Input processing: ICDIumns as channels {Frame-based) LI

v show grid

¥ channel legend

J O, Cancel Apply

This table shows the appropriate parameter settings for the Main tab of
the Visuals:Time Domain Options dialog box.

Parameter Setting

Input Processing Columns as channels
(Frame-based)

Show grid Checked

Channel legend Checked

The Time Scope block accepts both sample- and frame-based input signals,
but you must specify how the block should handle them. To do so, set

the Input processing parameter on the Time Scope — Visuals:Time
Domain Options dialog box to the appropriate choice.

In this example, you want the block to treat the input signal as frame
based, so you must set the Input processing parameter to Columns as
channels (Frame-based).

Setting Axis Properties. Navigate to the Axis Properties tab of the

Visuals:Time Domain Options dialog box, and set the parameters to the
values shown in the following table.

1-86

Displaying Time-Domain Data

Parameter Setting

Time range Input sample time
Time display offset 0

Minimum Y-limit -2.5

Maximum Y-limit 2.5

Y-axis label Amplitude

The Time range parameter allows you to enter a numeric value, a variable
that evaluates to a numeric value, or select the Input sample time menu
option. The actual range of values that the block displays on the X-axis
depends on the value of both the Time range and Time display offset
parameters. See the following figure.

Time display offset Time display offset + Time range

3

— - a--

25
ITime offset: 5000 (ms)) Time {ms)
X
N\
Time offset

Simulation Status Simulation ime

For information on the other labels in the scope window, see the Time Scope
reference page. In this example, the values on the X-axis range from 0 to
the Input sample time, where the Input sample time is 0.05 seconds (50
ms). Click OK to save your changes and close the Visuals:Time Domain
Options dialog box.

1-87

1 Working with Signals

Configuring Axis Scaling and Data Alignment. The Plot Navigation
options for the Time Scope block allow you to control when and how the block
scales the axes. These options also control how the block aligns your data with
respect to the axes. The following table describes these options.

Parameter Description

Axis scaling Allows you to specify when the block should
scale the axes. You can choose to scale

the axes manually, allow the scope to
automatically scale the axes when simulation
stops, or allow scaling as needed throughout
simulation.

Data range (%) Allows you to specify how much white space
surrounds your signal in the scope window.
You can specify a value for both the Y- and
X-axis. The higher the value you enter for
the Y-axis Data range (%), the tighter the
Y-axis range is with respect to the minimum
and maximum values in your signal. For
example, to have your signal cover the entire
Y-axis range when the block scales the axes,
set this value to 100.

Align Allows you to specify where the block should
align your data with respect to each axis.
You can choose to have your data aligned
with the top, bottom, or center of the Y-axis.
Additionally, if you select the Scale X-axis
limits check box, you can choose to have your
data aligned with the right, left, or center of
the X-axis.

1 To open the Plot Navigation options dialog box, navigate to the Tools
tab of the main configuration dialog box, and click Options.

1-88

Displaying Time-Domain Data

«): Time Scope - Tools:Plot Navigation Options X|

—Parameters

Y-axis

[scale X-axis limits

Buis scaling: IManuaI vI
Drata range (e I an align: ICenter - I

J

CIE

Cancel | Apply

2 Set the parameters as shown in the following table.

Parameter Setting
Axis scaling Manual
Data range (%) 80

Align Center
Scale X-axis limits Unchecked

3 Click OK to save your changes and close the dialog box.

Note If you have not already done so, repeat all of these procedures for the
Time Scopel block before continuing with the other sections of this example.

Using the Playback Controls

One of the advantages to using the Time Scope block in your models is that
you can control model simulation directly from the scope window. The buttons
on the Playback Toolbar of the Time Scope window allow you to play, pause,
stop, and take single-steps forward through model simulation. Alternatively,
there are several keyboard shortcuts you can use to control model simulation
when the Time Scope is your active window.

1-89

1 Working with Signals

You can access a list of keyboard shortcuts for the Time Scope by selecting
Help > Keyboard Command Help. The following procedure introduces
you to these features.

1 If the Time Scope window is not open, double-click the block icon in the
doc_timescope_ tut model. Start model simulation, by clicking the start

button (™) on the Playback Toolbar of the Time Scope window, or using
one of the following keyboard shortcuts:

e Ctrl+T
°p
® Space

2 While the simulation is running and one of the scopes is your active window,
pause the simulation by using either of the following keyboard shortcuts:

*p
* Space
Alternatively, you can pause the simulation by pressing the pause button

on the Time Scope window (Il), or by selecting Playback > Pause from
the scope menu.

3 With the model simulation still paused, advance the simulation by a single

time step using the Simulate one step button (IF) on the scope window.

Next, try using keyboard shortcuts to achieve the same result. Press Page
Down to advance the simulation by one time step, and then use the Right
arrow key to advance by another time step.

4 Resume model simulation using any of the following methods:

¢ Select Playback > Continue from the Time Scope menu.

¢ Press the Continue simulation button (¥) on the Playback Toolbar
of the scope window.

e Use a keyboard shortcut, such as p or Space.

1-90

Displaying Time-Domain Data

5 When simulation stops, your scopes should appear as follows.

) Time Scope -loix =10

File Tools “iew FPlayback Help A | File Tools Wiew Playback Help £
+'\- x'\- Y'\- +'\- x'\- Y'\- |
I [ecs I =%
1 O S SO SR 4
2 =
= =
= = :
= = :
=y =L |
—— Channel 1|}
2 A h h LR LR LR Fomemeee- v —
Channel 2 : : ; : : Channel 1
0 10 20 30 40 50] 17 20 30 40 a0
Time offzet: S000 (ms) Time (ms) Time offzet. 5000 (ms) Time (ms)
Ready T=5.000 Ready T=5.000

Modifying the Scope Display

You can control the appearance of the scope window using options from the
View menu. Among other capabilities, this menu allows you to:

¢ Control the display of the legend

e Edit the line properties of your signals

® Show or hide the available toolbars

Changing Signal Names in the Legend. You can change the name of a
signal by double-clicking the signal name in the legend. By default, the scope

names the signals Channel 1, Channel 2, etc. For this example, set the signal
names as shown in the following table.

1-91

1 Working with Signals

Block Name

Original Signal
Name

New Signal Name

Time Scope Channel 1 Noisy Sine Wave

Time Scope Channel 2 Filtered Noisy Sine
Wave

Time Scopel Channel 1 Original Sine Wave

Modifying Line Properties. Modify the line properties for the signals in
your model using the View > Line Properties menu option on the Time

Scope window.

1-92

Displaying Time-Domain Data

) Time Scope

=101 x|

Cwan
Magenta

Yellow

Red [!

v Elue
Green
Cther

File Tools | View Plavback Help
*H ¥ W Grid
v Legend
R Y
Line Propetties Moisy Sine Wave 1+ Visible
55 Ering Al Time Scope Windows Farward Chrl+F Filtered Moisy Sine \Wave # Skyle
v Toolbar Marker b
e v Playback Toolbar m
15 ¥ Stakus Bar
Highlight Sirmulink Block, Chel+L
w 0.5 h---- e iR S EEE L SRR EEE FEE FEEEEE -k -A---
- :
=] i \ :
£ !
L 05F-%----- Ehl e ER EEEECEEEE N1 ARt
] e R § I - .L
-] S 38 1 SRS SR AU S R
)| T | AU I Maoisy Sine Wave
. — Filtered Moisy Sine Wyave
- 1 +
] 10 a0 40 a0
Time offzet: 5000 (ms) Time (ms)
Ready T=5.000

Set the line properties according to the values shown in the following table.

1-93

1 Working with Signals

1-94

Block Style Marker Color
Name/Signal
Name

Time = None Black
Scope/Noisy Sine
Wave

Time = diamond Red
Scope/Filtered
Noisy Sine Wave

Time — 2 Blue
Scopel/Original
Sine Wave

Showing and Hiding Time Scope Toolbars. You can also use the options
on the view menu to show or hide toolbars on the Time Scope window. For
example:

¢ To hide the playback controls, select View > Playback Toolbar. Doing so
removes the playback toolbar from the scope window and also removes the
check mark from next to the Playback Toolbar option in the View menu.

® You can choose to show the playback toolbar again at any time by selecting
View > Playback Toolbar.

Verify that all toolbars are visible before moving to the next section of this
example.

Inspecting Your Data (Scaling the Axes and Zooming)

The Time Scope block has plot navigation tools that allow you to scale the
axes and zoom in or out on the scope window. The axes scaling tools allow you
to specify when and how often the scope scales the axes.

So far in this example, you have configured the Time Scope block for manual
axes scaling. Use one of the following options to manually scale the axes:

¢ Select Tools > Scale Axes Limits from the Time Scope menu.

Displaying Time-Domain Data

® Press the Scale Axes Limits toolbar button ().

® With the scope as your active window, press Ctrl + A.

Adjusting White Space Around the Signal. You can control how much
white space surrounds your signal and where your signal appears in relation
to the axes using the Data range (%) and Align parameters. In a previous
section, you set these parameters to 80 and Center, respectively.

To adjust the amount of white space surrounding your signal and realign

it with the axes, you must first open the Time Scope - Tools:Plot
Navigation Options dialog box. You can do so from the Tools tab of the main
Configuration dialog box, or by selecting Tools > Axes Scaling Options
from the scope menu.

® To increase the white space surrounding your signal, set the Data range
(%) parameter on the Time Scope — Tools:Plot Navigation Options
dialog box to 50.

¢ To align your signal with the bottom of the Y-axis, set the Align parameter
to Bottom.

The next time you scale the axes of the Time Scope window, the window
appears as follows.

1-95

1 Working with Signals

R
File Tools wiew Playback Help ai
+"\- X_\. \r:'\- |
I [Jacs
[SEEERREEEEE R :- ------------- I ------- Moisy Sine Wave
: —&— Filtered Moisy Sine Wave
I IENENNEN SIS SN——
Py S S— SR — N §
. e a e e
5 e pooTmeoeoeoe oo LR T n
= ! i ! !
£ 2 o . E— e -
1 f-$3-F-F----- v R R REEEY b BT Y EEEE 4 |
o i .
BTN SR OO, S N I . 4 S WO : -
R . e I e -
] 10 20 a0 40 |
Time affset: 5000 (m=) Time (ms)
Ready T=5.000

Using the Zoom Tools. The zoom tools allow you to zoom in simultaneously
in both the X and Y directions, or in either direction individually. For
example, to zoom in on the signal between 5010 ms and 5020 ms, you can
use the Zoom X option.

1-96

Displaying Time-Domain Data

® To activate the Zoom X tool, select Tools > Zoom X, or press the

corresponding toolbar button (*.). The scope indicates that the Zoom X
tool is active by depressing the toolbar button and placing a check mark
next to the Tools > Zoom X menu option.

® To zoom in on the region between 5010 ms and 5020 ms, click and drag
your cursor from the 10 ms mark to the 20 ms mark on the scope window.

¢ To zoom out of the scope window, right-click inside the window, and select
Zoom Out. Alternatively, you can return to the original view of your
signal by right-clicking inside the scope window and selecting Reset to
Original View.

Managing Multiple Time Scopes

The Time Scope block provides tools to help you manage multiple Time
Scope blocks in your models. The model used throughout this example,
doc_timescope_tut, contains two Time Scope blocks; Time Scope and Time
Scopel. The following sections discuss the tools you can use to manage these
Time Scope blocks.

Opening All Time Scope Windows. When you have multiple windows
open on your desktop, finding the one you need can be difficult. The Time
Scope block offers a View > Bring All Time Scopes Forward menu option
to help you manage your Time Scope windows. Selecting this option brings all
Time Scope windows into view. If a Time Scope window is not currently open,
this menu option opens the window and brings it into view.

To try this menu option in the doc_timescope_tut model, open the Time
Scope window and close the Time Scopel window. From the View menu
of the Time Scope window, select Bring All Time Scopes Forward. The
Time Scopel window opens and comes into view, along with the already
active Time Scope window.

1-97

1 Working with Signals

1-98

Opening Time Scope Windows at Simulation Start. When you have
multiple Time Scope blocks in your model, you may not want all Time Scope
windows to automatically open when you start simulation. You can control
whether or not the scope window opens at simulation start by selecting
File > Open at Start of Simulation from the Time Scope window. When
you select this option, the scope window opens automatically when you start
the simulation. When you do not select this option, you must manually open
the scope window by double-clicking the corresponding Time Scope block in
your model.

Finding the Right Time Scope Block in Your Model. Sometimes you have
multiple Time Scope blocks in your model and need to find the location of one
that corresponds to the active Time Scope window. In such cases, you can use
the View > Highlight Simulink Block menu option, or the corresponding

toolbar button (3). When you do so, the model window becomes your
active window, and the corresponding Time Scope block flashes three times in
the model window. This option can help you locate Time Scope blocks in your
model and determine which signals they are attached to.

To try this feature, open the Time Scope window, and click the Highlight
Simulink Block button on the playback toolbar. Doing so brings the
doc_timescope_tut model into view. The Time Scope block flashes three
times in the model window, allowing you to see where in your model the
block is located.

Closing All Time Scope Windows. If you save your model with Time Scope
windows open, those windows will reopen the next time you open the model.
Reopening the Time Scope windows when you open your model can increase
the amount of time it takes your model to load. If you are working with a
large model, or a model containing multiple Time Scopes, consider closing all
Time Scope windows before you save and close that model. To do so, use the
File > Close All Time Scope Windows menu option.

To use this menu option in the doc_timescope_tut model, open the Time
Scope or Time Scopel window, and select File > Close All Time Scope
Windows. Both the Time Scope and Time Scopel windows close. If you now
save and close the model, the Time Scope windows do not automatically open
the next time you open the model. You can open Time Scope windows at any
time by double-clicking a Time Scope block in your model. Alternatively, you

Displaying Time-Domain Data

can choose to automatically open the scope windows at simulation start by
selecting File > Open at Start of Simulation from the Time Scope window.

1-99

1 Working with Signals

Displaying Frequency-Domain Data

You can use Signal Processing Blockset blocks to work with signals in both
the time and frequency domain. To display frequency-domain signals, you can
use blocks from the Signal Processing Sinks library, such as the Vector Scope,
Spectrum Scope, Matrix Viewer, and Waterfall Scope blocks.

You can use the Spectrum Scope block to display the frequency spectra of
time-domain input data. In contrast to the Vector Scope block, the Spectrum
Scope block computes the FFT of the input signal internally, transforming it
into the frequency domain. In this example, you use a Spectrum Scope block
to display the frequency content of two frame-based signals simultaneously:

1 At the MATLAB command prompt, type doc_spectrumscope_tut.

The Spectrum Scope Example opens.

1-100

Displaying Frequency-Domain Data

E! doc_spectrumscope_tut

=10l x|

File Edit WView Simulation Format Tools Help
DFEHE|FBER|[ED 422 r 5 [N R pEaR RER>
In this example, the Spectrum Scope blodk displays 3 two-channel frame-based
| Speetrum SCGPE Exﬂmple signal in the frequency domain
mio &) "@] vel) [l

Signal From
Werspaos

FOATzol
rez M atrizx Spectrum
Tl . - Cn e e
[18=c1) Loncatenate Scope
Digital
Filter Design
worspace variaoles called "mtls™ and "Fs
[100% | | [FixedstepDiscrete

Also, the variables Fs and mtlb are loaded into the MATLAB workspace.

2 Double-click the Signal From Workspace block. Set the block parameters
as follows, and then click OK:

Signal = mtlb
Sample time = 1
Samples per frame = 16

Form output after final data value = Cyclic Repetition

Based on these parameters, the Signal From Workspace block repeatedly
outputs the input signal, mtlb, as a frame-based signal with a sample
period of 1 second.

1-101

1 Working with Signals

File

3 Use the Digital Filter Design block to filter the input signal to produce
two distinct signals to send to the Spectrum Scope block. Use the default
parameters.

)} Block Parameters: Digital Filter Design

Edit Analysis Targets

View Window Help

=101 x|

DEEHER|(220X DN 20 Bk @ E W

] (8 | sl

— Current Fiter Information

— Magnitude Response (dB)

. pWaammm
|_Design Method

IR IEIu‘fterworth vl
& FIR IEquirippIe vl

Denzity Factor: FIB

Structure: Direct-Form FIR . -20
Ordler: 16 %
Stakle: Yes L5 -4l
Source: Designed E
g 5
=
-20
Store Filter ... | 0 0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 0.5
il et I Normalized Frequency (=x rad/zample)
—FResponze Type —Fitter Croder —Fregquency Specifications: —Magnitude Specifications.
O Lowpass d {~ Specify order: |1 [i] Uit INormanzed (Oto 1) j nits: IdEl j
o Highpass -
J {* Minimum order
{~ Bandpass Apass: ﬁ
{~ Bandsto, i
& — Jptions, Aston: W

Design Fiiter |

[Ready

1-102

4 Double-click the Matrix Concatenate block. Set the block parameters as
follows, and then click OK:

¢ Number of inputs = 2

Displaying Frequency-Domain Data

Mode = Multidimensional array

Concatenate dimension = 2

The Matrix Concatenate block combines the two signals so that each
column corresponds to a different signal.

Double-click the Spectrum Scope block. On the Scope Properties tab, set

the block parameters as follows, and then click OK:

Select the Buffer input check box.
Buffer size = 128

Buffer overlap = 64

Window type = Hann

Window sampling = Periodic

Clear the Specify FFT length check box.

Number of spectral averages = 2

Based on these parameters, the Spectrum Scope block buffers each input
channel to a new frame size of 128 (from the original frame size of 16) with
an overlap of 64 samples between consecutive frames. Because Specify
FFT length is not selected, the frame size of 128 is used as the number of
frequency points in the FFT. This is the number of points plotted for each
channel every time the scope display is updated.

6 Run the model.

1-103

1 Working with Signals

7 While the model is running, right-click in the Spectrum Scope window.

Point to Ch1, point to Style, and point to :. Right-click again and point to
Autoscale.

The Spectrum Scope block computes the FFT of each of the input signals.
It then displays the magnitude of the frequency-domain signals in the
Spectrum Scope window.

=10l x]

File #xes Channels Window Help

|

20

Magnitude, dB

-100

-120

0 50 100 150 200 250 300 350 400 450 500
Frame: 396 Frequency (mHz)

The FFT of the first input signal, from column one, is the blue dotted line.
The FFT of the second input signal, from column two, is the black solid

1-104

Displaying Frequency-Domain Data

line. Every time the scope display is updated, 128 points are plotted for
each channel.

You have now used the Spectrum Scope block to display two, frame-based
signals in the frequency domain.

1-105

1 Working with Signals

1-106

Advanced Signal Concepts

This chapter helps you understand how to inspect and convert sample and
frame rates. It also explains how to change a sample-based signal into a
frame-based signal. Finally, it discusses the concept of delay and describes

how this delay can be minimized.

* “Inspecting Sample Rates and Frame Rates” on page 2-2
® “Converting Sample and Frame Rates” on page 2-11

® “Converting Frame Status” on page 2-33

¢ “Delay and Latency” on page 2-49

2 Advanced Signal Concepts

2-2

Inspecting Sample Rates and Frame Rates

In this section...

“Sample Rate and Frame Rate Concepts” on page 2-2

“Inspecting Sample-Based Signals Using the Probe Block” on page 2-3
“Inspecting Frame-Based Signals Using the Probe Block” on page 2-5
“Inspecting Sample-Based Signals Using Color Coding” on page 2-7

“Inspecting Frame-Based Signals Using Color Coding” on page 2-9

Sample Rate and Frame Rate Concepts

Sample rates and frame rates are important issues in most signal processing
models. This is especially true with systems that incorporate rate conversions.
Fortunately, in most cases when you build a Simulink model, you only need
to set sample rates for the source blocks. Simulink automatically computes
the appropriate sample rates for the blocks that are connected to the source
blocks. Nevertheless, it is important to become familiar with the sample rate
and frame rate concepts as they apply to Simulink models.

The input frame period (Tﬁ) of a frame-based signal is the time interval
between consecutive vector or matrix inputs to a block. Similarly, the
output frame period (Tfo) 1s the time interval at which the block updates the
frame-based vector or matrix value at the output port.

In contrast, the sample period, T, is the time interval between individual
samples in a frame, this value is shorter than the frame period when the
frame size is greater than 1. The sample period of a frame-based signal is the
quotient of the frame period and the frame size, M:

T,=T; /M

More specifically, the sample periods of inputs (7)) and outputs (7,) are
related to their respective frame periods by

Ty =Ts /M

Inspecting Sample Rates and Frame Rates

Too =Ty I M,

where M, and M, are the input and output frame sizes, respectively.

The illustration below shows a single-channel, frame-based signal with a
frame size (M) of 4 and a frame period (Tﬁ) of 1. The sample period, T, is
therefore 1/4, or 0.25 second.

Ti=1
LA l— first input frome

won (1 IR
15 11

12

t=1

wout

04 -1 o Ln
e B

To Wakspace

t=1 t=0

The frame rate of a signal is the reciprocal of the frame period. For instance,
the input frame rate would be 1/T . Similarly, the output frame rate would

be 1/Ty, .

The sample rate of a signal is the reciprocal of the sample period. For

instance, the sample rate would be 1/7.

In most cases, the sequence sample period T; is most important, while the
frame rate is simply a consequence of the frame size that you choose for
the signal. For a sequence with a given sample period, a larger frame size
corresponds to a slower frame rate, and vice versa.

Inspecting Sample-Based Signals Using the Probe
Block

You can use the Probe block to display the sample period of a sample-based
signal. For sample-based signals, the Probe block displays the label Ts, the
sample period of the sequence, followed by a two-element vector. The left
element is the period of the signal being measured. The right element is the
signal’s sample time offset, which is usually 0.

2 Advanced Signal Concepts

Note Simulink offers the ability to shift a signal’s sample times by an
arbitrary value, which is equivalent to shifting the signal’s phase by a
fractional sample period. However, sample-time offsets are rarely used in
signal processing systems, and Signal Processing Blockset blocks do not
support them.

In this example, you use the Probe block to display the sample period of a
sample-based signal:

1 At the MATLAB command prompt, type doc_probe_tut1.

The Probe Example 1 model opens.

-l

File Edit Views Simulation Format Tools Help

D& =il = r sfon |voma ~| FEBEEE BE

In thiz example, the Probe blocks display the sample period of a signal that is
repeatedhy upsampled by a factor of 2.

Terminatol Terminatar] Terminat0r2

|Probe Example 1

Fmobe| T=[00] ‘ Fmbel T=:[0 0] Fmbel| T=:[00]
F Y FY F Y
1:1000 | T o | T o | dsp_examples_yout
Signal From Upsarmple Upzample To Workspace
Woarkspase

Mote: Thiz model created wodspace varables called "dsp_examples_yout'.

Ready |100% lodeds v

2 Run the model.

The figure below illustrates how the Probe blocks display the sample period
of the signal before and after each upsample operation.

2-4

Inspecting Sample Rates and Frame Rates

=10 x4

File Edit Wiew Simulation Format Tools Help

ODeE& 2R 2 2y sfio |ome - BeEBEd| BB

In thiz example, the Frobe blodes display the sample period of a signal that is
|Pr°be Examp|e1 I repeatedhy upzampled by a factor of 2.

Terminatol Terminator] Terminator2

Fmobe| T=[10] ‘ Fmbel]| T=:[0.50] FmbeZ| T=:[0.25 0]
FY FY F Y
1:1000 | T o > T o | dsp_examples_yout
Signal Fom Upsample Up=sample1 To Workspace
Warkspace

Mate: Thiz model created wodepace variables called "dsp_sxamples yvout",

Ready 100%: odeds
A

As displayed by the Probe blocks, the output from the Signal From
Workspace block is a sample-based signal with a sample period of 1 second.
The output from the first Upsample block has a sample period of 0.5
second, and the output from the second Upsample block has a sample
period of 0.25 second.

Inspecting Frame-Based Signals Using the Probe
Block

You can use the Probe block to display the frame period of a frame-based
signal. For frame-based signals, the block displays the label Tf, the frame
period of the sequence, followed by a two-element vector. The left element is
the period of the signal being measured. The right element is the signal’s
sample time offset, which is usually 0.

Note Simulink offers the ability to shift a signal’s sample times by an
arbitrary value, which is equivalent to shifting the signal’s phase by a
fractional sample period. However, sample-time offsets are rarely used in
signal processing systems, and Signal Processing Blockset blocks do not
support them.

2-5

2 Advanced Signal Concepts

In this example, you use the Probe block to display the frame period of a
frame-based signal:

1 At the MATLAB command prompt, type doc_probe_tut2.

The Probe Example 2 model opens.

E!doc_prohe_tutz _ Ol x|
File Edit “iew Simulation Format Tools Help
D& R = 2 r oo [- BB BE
In thiz example, the Probe blocks display the frame period of a signal that iz
|F’r0be Example 2 I mepeatedhy upsampled by a factor of 2.
Teminamr Terrninamﬂ Temﬂinamﬂ
Fmbe T=[0 0] Fmba1 T=[0 0] Fmbe2| T=[00]
F Y F Yy &
1:1000 - TQ - TQ | dsp_examples_yout
Signal Frem Upzample Upzamplz1 To Wiorkspace
Workspace
Mote: Thiz model created wokspace variables called "dzp_sxamplez_yout".
Ready 100% |ode4s v

2 Run the model.

The figure below illustrates how the Probe blocks display the frame period
of the signal before and after each upsample operation.

2-6

Inspecting Sample Rates and Frame Rates

~ipixi

Fle Edit W%ew Simulation Format Tools Help

DSE& LR = 2 r =g [> B @D =B

In this example, the Probe blocks display the frame period of a signal that is
repeatedly upsampled by a factor of 2.

Teminamr Terrninamﬂ Teminamrz

|Probe Example 2 |

Fmbz| TG 0] Pmbe1 TH[E 0] FmbeZ| TR[40]
& » r 3
1:1000 i T o » T o P d=p_examples_yout
Signal Fom Up=ample Up=sample1 To Wio rkspace

Workspace

Mote: Thiz model created wokspace variables called "dsp_sxamples_yout".

Ready [1o0% [[|ode4s v

As displayed by the Probe blocks, the output from the Signal From
Workspace block is a frame-based signal with a frame period of 16 seconds.
The output from the first Upsample block has a frame period of 8 seconds,
and the output from the second Upsample block has a sample period of 4
seconds.

Note that the sample rate conversion is implemented through a change in the
frame period rather than the frame size. This is because the Frame-based
mode parameter in the Upsample blocks is set to Maintain input frame
size rather than Maintain input frame rate.

Inspecting Sample-Based Signals Using Color Coding

In the following example, you use sample time color coding to view the sample
rate of a sample-based signal:

1 At the MATLAB command prompt, type doc_color_ tuti.

The Sample Time Color Example 1 model opens.

2-7

2 Advanced Si

gnal Concepts

2-8

E!duc_culor_tutl

Wiew Simulation Farmat Tools Help

Fil= Edit

=10l x|

D & & 2Ry =for [ims =] e B S

| mE

|Sample Time Color Example 1 |

Ready

In this example, sample time color coding highlights the rate
change of asignal that is repeatedly upsampled by a factor of 2.

1:1000 | T = L T o | d=p_examples_yout
Signal Fom Up=sample Up=zample1 To Warkspace
Workspace
Mote: Thiz model creates a wotkspace wariable called "dsp_examples_wout'.
[1002% [[|odeds

2 From the Format menu, point to Sample Time Display, and select

Colors.

This selection turns on sample time color coding. Simulink now assigns
each sample rate a different color.

3 Run the model.

The model should now look similar to the following figure:

Green = second fastest sample rate

1:1000

—»

Si

gnal From
EpE0E

l

—»

Blue = third fastest sample rate

Every sample-based signal in this model has a different sample rate.

—»

dsg_sxamolas_

youtl

—

Red = fastest sample rate

Therefore, each signal is assigned a different color.

r

Inspecting Sample Rates and Frame Rates

For more information about sample time color coding, see “How to View
Sample Time Information” in the Simulink documentation.

Inspecting Frame-Based Signals Using Color Coding

In this example, you use sample time color coding to view the frame rate of
a frame-based signal:

1 At the MATLAB command prompt, type doc_color_ tut2.

The Sample Time Color Example 2 model opens.

=1

File Edit View Simulation Format Tools Help

DS E&S| & B2z sfor vml]| BB BB

In thiz example, sample time color coding highlights the frame rate
change of a signal that is repeatedly upzampled by a factar of 2.

|Sample Time Color Example 2 |

1:1000 T 2 | T z | dsp_emamples_yout

Y

Signal Fom Upzample Upzample1 To Workspace
Wior=space

Mote: This model creates awotspace variable called "dsp_examples_wout".

Ready [1o0s [[|odeds "

2 To turn on sample time color coding, from the Format menu, point to
Sample Time Display, and select Colors.

Simulink now assigns each frame rate a different color.

Advanced Signal Concepts

2-10

3 Run the model.

The model should now look similar to the following figure:

=‘-— —-:—-——-- dso_sxamoles_yout

Because the Frame-based mode parameter in the Upsample blocks is
set to Maintain input frame size rather than Maintain input frame
rate, each Upsample block changes the frame rate. Therefore, each
frame-based signal in the model is assigned a different color.

4 Double-click on each Upsample block and change the Frame-based mode
parameter to Maintain input frame rate.

5 Run the model.

Every signal is coded with the same color. Therefore, every signal in the
model now has the same frame rate.

h
—=
h
—=
I'\
3

memer o=

For more information about sample time color coding, see “Displaying Sample
Time Colors” in the Simulink documentation.

Converting Sample and Frame Rates

Converting Sample and Frame Rates

In this section...

“Rate Conversion Blocks” on page 2-11

“Rate Conversion by Frame-Rate Adjustment” on page 2-12
“Rate Conversion by Frame-Size Adjustment” on page 2-15
“Avoiding Unintended Rate Conversion” on page 2-19
“Frame Rebuffering Blocks” on page 2-24

“Buffering with Preservation of the Signal” on page 2-27
“Buffering with Alteration of the Signal” on page 2-30

Rate Conversion Blocks

There are two common types of operations that impact the frame and sample
rates of a signal: direct rate conversion and frame rebuffering. Direct rate
conversions, such as upsampling and downsampling, can be implemented by
altering either the frame rate or the frame size of a signal. Frame rebuffering,
which is used alter the frame size of a signal in order to improve simulation
throughput, usually changes either the sample rate or frame rate of the signal
as well.

The following table lists the principal rate conversion blocks in Signal
Processing Blockset software. Blocks marked with an asterisk (*) offer the
option of changing the rate by either adjusting the frame size or frame rate.

Block Library

Downsample * Signal Operations

Dyadic Analysis Filter Bank Filtering / Multirate Filters
Dyadic Synthesis Filter Bank Filtering / Multirate Filters
FIR Decimation * Filtering / Multirate Filters
FIR Interpolation * Filtering / Multirate Filters
FIR Rate Conversion Filtering / Multirate Filters

2-11

2 Advanced Signal Concepts

2-12

Block Library
Repeat * Signal Operations
Upsample * Signal Operations

Direct Rate Conversion

Rate conversion blocks accept an input signal at one sample rate, and
propagate the same signal at a new sample rate. Several of these blocks
contain a Frame-based mode parameter offering two options for adjusting
the sample rate of the signal:

® Maintain input frame rate: Change the sample rate by changing the
frame size (that is, M, # M), but keep the frame rate constant (Tfo = Tﬁ).

® Maintain input frame size: Change the sample rate by changing the
output frame rate (that is T, # Ty, but keep the frame size constant
M, = M).

The setting of this parameter does not affect sample-based inputs.

Note When a Simulink model contains signals with various frame rates,
the model is called multirate. You can find a discussion of multirate models
in “Excess Algorithmic Delay (Tasking Latency)” on page 2-57. Also see
“Scheduling Considerations” in the Real-Time Workshop® documentation.

Rate Conversion by Frame-Rate Adjustment

One way to change the sample rate of a signal, 1/T,, is to change the output
frame rate (TfO # Tﬁ), while keeping the frame size constant (M, = M,). Note
that the sample rate of a signal is defined as 1/T, = M /T, :

1 At the MATLAB command prompt, type doc_downsample tuti.

The Downsample Example T1 model opens.

Converting Sample and Frame Rates

E!duc_duwnsample_tutl ;IQIE'

File Edit ‘Wiew Simulation Format Tools Help

D|§E§|%E|¢.¢@|f}@|b II1D_D INnrmaI ﬂ|:.|z-|p@

In this example, the Downzample blod downzamples the signal to half
|Dﬂwn93mple E){ample T1 I it original sample rate by raducing the frame rate by that factor.

Terminatnr Terrninatoﬂ

T=[00] [Probe T=[00] [Frobet
Fy FY
1:1000 - ‘1(2 = FFT P dzp_examples_yout
Signal From Crovunsample FFT To Wokspace

Watspace]

Mote: This model creates a wotkspace variable called "dsp_examples_yout'.
ariables will be cleared whean the model is closad.

Ready [100% | | |FixedstepDiscrete v

2 From the Format menu, point to Port/Signal Displays, and select
Signal Dimensions.

When you run the model, the dimensions the signals appear next to the
lines connecting the blocks.

3 Double-click the Signal From Workspace block. The Block Parameters:
Signal From Workspace dialog box opens.

4 Set the block parameters as follows:
* Sample time = 0.125
* Samples per frame = 8
Based on these parameters, the Signal From Workspace block outputs a

frame-based signal with a sample period of 0.125 second and a frame size
of 8.

2-13

2 Advanced Signal Concepts

2-14

E!duc_duwnsample_tutl =10l x|

File Edit “iew Simulation Format Tools Help

5 Save these parameters and close the dialog box by clicking OK.

6 Double-click the Downsample block. The Block Parameters:
Downsample dialog box opens.

7 Set the Frame-based mode parameter to Maintain input frame size,
and then click OK.

The Downsample block is configured to downsample the signal by changing
the frame rate rather than the frame size.

8 Run the model.

After the simulation, the model should look similar to the following figure.

D& & ER|(Es 4 [202 p = in0 [Nomal | B @

|Downsample Example T1 |

In thiz example, the Downzample blod downsamples the signal to half
its original sample rate by reducing the frame rate by that factor.

11000

Terminatnr Terrninatnm

Signal From
o desp 3

Ready

Mote: This model creates a3 wokspace variable called "dsp_examples_yout".
ariables will be clearad when the model is closed.

TE[1 0] |Probe TRE[Z0] [|Probed
F 3 F 3
[Ex1] [Ex1]
w1 xl %1
[Bxl] [811]= ‘Lz [Bxl] [Sx1]= FFT [Ex1] P dzp_examples_yout
Davnsample FFT Tao Worsp ace

100%: |Fi><ed5tepDiscrete o

Converting Sample and Frame Rates

Because Tp = M; XT;, the input frame period, Ty, is T =8x0.125=1
second. This value is displayed by the first Probe block. Therefore the input

frame rate, 1/Ty;, is also 1 second.

The second Probe block in the model verifies that the output from the
Downsample block has a frame period, T}, , of 2 seconds, twice the frame

period of the input. However, because the frame rate of the output, 1/ Tfo ,
is 0.5 second, the Downsample block actually downsampled the original
signal to half its original rate. As a result, the output sample period,

Ty, =Ty, / M, , is doubled to 0.25 second without any change to the frame
size. The signal dimensions in the model confirm that the frame size did

not change.

Rate Conversion by Frame-Size Adjustment

One way to change the sample rate of a signal is by changing the frame size

(that is M, # M), but keep the frame rate constant (T, = Tﬁ). Note that the
sample rate of a signal is defined as 1/T,, = M /T,

1 At the MATLAB command prompt, type doc_downsample tut2

The Downsample Example T2 model opens.

2-15

2 Advanced Signal Concepts

2-16

E!duc_duwnsample_tutz ;lglil

File Edit ‘Wiew Simulation Format Tools Help

D'@E§|%E|<}==ﬁ>{r|‘_ﬁfz|b II‘IEI_D INDrmaI j|B

|Dﬂwnsamp|e E)(ample T2 I In this example, the Downsample blod downsamples the signal to half

it= ariginal sample rate by reducing the frame size by that factor.

Terminatnr Terrninatnm

T=[P0] [Probe T=:[00] |Frabed
F 3 F 3
14000 e ‘1(2 = FFT P dzp_examples_yout
Signal From Crovnsample FFT Ta Warksp ace

Watspace]

Mote: This model creates a wotkspace variable called "dsp_examples_yout'.
ariables will be clearad when the model is closed.

Ready [100% | | [FixedstepDiscrete v

2 From the Format menu, point to Port/Signal Displays, and select
Signal Dimensions.

When you run the model, the dimensions the signals appear next to the
lines connecting the blocks.

3 Double-click the Signal From Workspace block. The Block Parameters:
Signal From Workspace dialog box opens.

4 Set the block parameters as follows:
* Sample time = 0.125
* Samples per frame = 8
Based on these parameters, the Signal From Workspace block outputs a

frame-based signal with a sample period of 0.125 second and a frame size
of 8.

Converting Sample and Frame Rates

5 Save these parameters and close the dialog box by clicking OK.

6 Double-click the Downsample block. The Block Parameters:
Downsample dialog box opens.

7 Set the Frame-based mode parameter to Maintain input frame rate,
and then click OK.

The Downsample block is configured to downsample the signal by changing
the frame size rather than the frame rate.

2-17

2 Advanced Signal Concepts

2-18

8 Run the model.

After the simulation, the model should look similar to the following figure.

E!duc_duwnsample_tutz ;Iglil

File Edit “iew Simulation Format Tools Help

D|@g%|%é|¢::ﬁ){r|fﬁﬁ|b IIIEI.D INu:urmaI jIE

In thiz example, the Downzample blodk downsamples the signal to half
its original sample rate by reducing the frame size by that factor.

Terminatnr Terminator'I

|Downsample Example T2 |

TE[10] |Probe TE[1 0] |Probed
F 1 F 3
[Bx1] [1]
. [Ex1] - [i1] . (1] o
1:1000 T ‘1(2 T FFT P dzp_examples_yout
Signal From Crawnsample FFT To Wokspace
Watspacea]

Mote: This model creates a wotkspace wariable called "dzp_axamples_yout'.
ariables will be clearad when the model is closed.

Ready 100%: FixedstepDiscrete
I I I I A

Because Ty = M; XT;, the input frame period, T, is T =8x%0.125=1
second. This value is displayed by the first Probe block. Therefore the input

frame rate, 1/Tﬁ~ , 1s also 1 second.

The Downsample block downsampled the input signal to half its original
frame size. The signal dimensions of the output of the Downsample
block confirm that the downsampled output has a frame size of 4, half
the frame size of the input. As a result, the sample period of the output,

Ty, =Ty, / M, , now has a sample period of 0.25 second. This process

occurred without any change to the frame rate (Tp =T,).

Converting Sample and Frame Rates

Avoiding Unintended Rate Conversion

It is important to be aware of where rate conversions occur in a model. In a
few cases, unintentional rate conversions can produce misleading results:

1 At the MATLAB command prompt, type doc_vectorscope_tut1.
The Vector Scope Example model opens.

2 Double-click the upper Sine Wave block. The Block Parameters: Sine
Wave dialog box opens.

3 Set the block parameters as follows:
* Frequency (Hz) =1
e Sample time = 0.1

e Samples per frame = 128

Based on the Sample time and the Samples per frame parameters,
the Sine Wave outputs a sinusoid with a frame period of 128*0.1 or 12.8
seconds.

4 Save these parameters and close the dialog box by clicking OK.
5 Double-click the lower Sine Wave block.
6 Set the block parameters as follows, and then click OK:

¢ Frequency (Hz) =2

¢ Sample time = 0.1

¢ Samples per frame = 128

Based on the Sample time and the Samples per frame parameters,
the Sine Wave outputs a sinusoid with a frame period of 128%0.1 or 12.8
seconds.

7 Double-click the Magnitude FFT block. The Block Parameters:
Magnitude FFT dialog box opens.

8 Select the Inherit FFT length from input dimensions check box, and
then click OK.

2-19

2 Advanced Signal Concepts

2-20

This setting instructs the block to use the input frame size (128) as the FFT
length (which is also the output size).

9 Double-click the Vector Scope block.

10 Set the block parameters as follows, and then click OK:

¢ (Click the Scope Properties tab.

Input domain = Frequency

Click the Axis Properties tab.

Minimum Y-limit = -10

¢ Maximum Y-limit = 40

Run the model.

The model should now look similar to the following figure. Note that the

E!dnc_vectnrscupe_tutl

File Edit Wiew Simulation Format

signal leaving the Magnitude FFT block is 128-by-1.

=101

Tools Help

O SHES| & B2R| 52 llinf INDrmaI AEEDEn mBRE T e

|Vector Scope Example I

Sine Wave

—
~

Sine Wawe1

Ready

1251

1251

In this example, the VWector Scope blod uses the input frame size (128 and
period (12.8)t0 deduce the original signal zample period (0.1, which allows
itto correctly display the peaks at 1 Hz and 2 H=.

Teminator
2

TH[12.6 0] |Fobe

F 3

-
12 1] T FFTE [125e1] |, .
Freq
itud
Ma.gFl}Tu = Vector
Scope
100%: |Fixed5tepDiscrete)

Converting Sample and Frame Rates

The Vector Scope window displays the magnitude FFT of a signal
composed of two sine waves, with frequencies of 1 Hz and 2 Hz.

) doc_vectorscope_tutl/Yector Scope i

File #Axes Channels Window Help a

40

a5

a0

25

20

Arnplitude

-10

0 0.5 1 1.5 2 2.5 2 2.5 4 4.5
Frame: 328 Frequency (Hz)

n

The Vector Scope block uses the input frame size (128) and period (12.8) to
deduce the original signal’s sample period (0.1), which allows it to correctly
display the peaks at 1 Hz and 2 Hz.

12 Double-click the Magnitude FFT block. The Block Parameters:
Magnitude FFT dialog box opens.

13 Set the block parameters as follows:
¢ (Clear the Inherit FFT length from input dimensions check box.
¢ Set the FFT length parameter to 256.

2-21

2 Advanced Signal Concepts

2-22

Based on these parameters, the Magnitude FFT block zero-pads the
length-128 input frame to a length of 256 before performing the FFT.

14 Run the model.

The model should now look similar to the following figure. Note that the
signal leaving the Magnitude FFT block is 256-by-1.

E!dnc_vecturscupe_tutl i =10l]

File Edit Wiew Simulation Format Tools Help

Dlﬁﬂélc‘hﬁﬁlfﬁﬂlb llinf INu:urma| j|$|“@ﬂ5{r®

In this example, the Wector Scope blod uzes the input frame size (128) and
|VBCtor Scope Example I period (12.8) 10 deduce the original signal sample periad (0.1), which allows
it to correctly display the peaks at 1 Hz and 2 Hz.

Teminator
2

Sine Wave TH[12.8 0] |Probe
155 Y
= M
12201] T IFFTE 1]y
P
Freq
126K
lagnitude
EFT Wector
Sine Waue1 Seope
Ready 100%: |Fixedstepiscrete v

Converting Sample and Frame Rates

The Vector Scope window displays the magnitude FFT of a signal
composed of two sine waves, with frequencies of 2 Hz and 4 Hz.

<) doc_vectorscope_tutl/Yector Scope i

File #Axes Channels Window Help a

40

a5

a0

25

20

Arnplitude

0 1 2 2 4 &
Frame: 428 Frequency (Hz

10

1o I HWMMLHHSHH

In this case, based on the input frame size (256) and frame period (12.8),
the Vector Scope block incorrectly calculates the original signal’s sample
period to be (12.8/256) or 0.05 second. As a result, the spectral peaks
appear incorrectly at 2 Hz and 4 Hz rather than 1 Hz and 2 Hz.

The source of the error described above is unintended rate conversion.

The zero-pad operation performed by the Magnitude FFT block halves the
sample period of the sequence by appending 128 zeros to each frame. To
calculate the spectral peaks correctly, the Vector Scope block needs to know
the sample period of the original signal.

15 To correct for the unintended rate conversion, double-click the Vector
Scope block.

2-23

2 Advanced Signal Concepts

2-24

16 Set the block parameters as follows:
e (Click the Axis Properties tab.
¢ (Clear the Inherit sample time from input check box.

® Set the Sample time of original time series parameter to the actual
sample period of 0.1.

17 Run the model.

The Vector Scope block now accurately plots the spectral peaks at 1 Hz
and 2 Hz.

In general, when you zero-pad or overlap buffers, you are changing the sample
period of the signal. If you keep this in mind, you can anticipate and correct
problems such as unintended rate conversion.

Frame Rebuffering Blocks

There are two common types of operations that impact the frame and sample
rates of a signal: direct rate conversion and frame rebuffering. Direct rate
conversions, such as upsampling and downsampling, can be implemented by
altering either the frame rate or the frame size of a signal. Frame rebuffering,
which is used alter the frame size of a signal in order to improve simulation
throughput, usually changes either the sample rate or frame rate of the signal
as well.

Sometimes you might need to rebuffer a signal to a new frame size at some
point in a model. For example, your data acquisition hardware may internally
buffer the sampled signal to a frame size that is not optimal for the signal
processing algorithm in the model. In this case, you would want to rebuffer
the signal to a frame size more appropriate for the intended operations
without introducing any change to the data or sample rate.

The following table lists the principal Signal Processing Blockset buffering
blocks.

Block Library
Buffer Signal Management/ Buffers
Delay Line Signal Management/ Buffers

Converting Sample and Frame Rates

Block Library
Unbuffer Signal Management/ Buffers
Variable Selector Signal Management/ Indexing

Blocks for Frame Rebuffering with Preservation of the Signal
Buffering operations provide another mechanism for rate changes in signal
processing models. The purpose of many buffering operations is to adjust
the frame size of the signal, M, without altering the signal’s sample rate 7.
This usually results in a change to the signal’s frame rate, T}, according to
the following equation:

Ty = MT,

However, the equation above is only true if no samples are added or deleted
from the original signal. Therefore, the equation above does not apply to
buffering operations that generate overlapping frames, that only partially
unbuffer frames, or that alter the data sequence by adding or deleting
samples.

There are two blocks in the Buffers library that can be used to change a
signal’s frame size without altering the signal itself:

® Buffer — redistributes signal samples to a larger or smaller frame size
e Unbuffer — unbuffers a frame-based signal to a sample-based signal

(frame size = 1)

The Buffer block preserves the signal’s data and sample period only when its
Buffer overlap parameter is set to 0. The output frame period, T, is

_ M, Ty
M:

12

Ty,

where Tﬁ is the input frame period, M, is the input frame size, and M, is
the output frame size specified by the Output buffer size (per channel)
parameter.

2-25

2 Advanced Signal Concepts

2-26

The Unbuffer block unbuffers a frame-based signal to its sample-based
equivalent, and always preserves the signal’s data and sample period

Ty =Ty | M;

where Tﬁ and M, are the period and size, respectively, of the frame-based
input.

Both the Buffer and Unbuffer blocks preserve the sample period of the
sequence in the conversion (T, = T).

Blocks for Frame Rebuffering with Alteration of the Signal

Some forms of buffering alter the signal’s data or sample period in addition to
adjusting the frame size. This type of buffering is desirable when you want to
create sliding windows by overlapping consecutive frames of a signal, or select
a subset of samples from each input frame for processing.

The blocks that alter a signal while adjusting its frame size are listed below.
In this list, T'; is the input sequence sample period, and T}, and T}, are the
input and output frame periods, respectively:

e The Buffer block adds duplicate samples to a sequence when the Buffer
overlap parameter, L, is set to a nonzero value. The output frame period
is related to the input sample period by

Ty, = (M, - L)Ty;

where M, is the output frame size specified by the Output buffer size
(per channel) parameter. As a result, the new output sample period is

(M, -L)T;
TSO — OM St

o

® The Delay Line block adds duplicate samples to the sequence when the
Delay line size parameter, M, is greater than 1. The output and input
frame periods are the same, Tﬂ) = Tﬁ =T, and the new output sample

period 1s

Converting Sample and Frame Rates

Tsi

T, =S
SO M

o

¢ The Variable Selector block can remove, add, and/or rearrange samples in
the input frame when Select is set to Rows. The output and input frame
periods are the same, T} = Tﬁ, and the new output sample period is

M. T,

TSO — 1”8l
MO

where M is the length of the block’s output, determined by the Elements
vector.

In all of these cases, the sample period of the output sequence is not equal to
the sample period of the input sequence.

Buffering with Preservation of the Signal

In the following example, a signal with a sample period of 0.125 second is
rebuffered from a frame size of 8 to a frame size of 16. This rebuffering
process doubles the frame period from 1 to 2 seconds, but does not change the
sample period of the signal (T, = T, = 0.125). The process also does not add or
delete samples from the original signal:

2-27

2 Advanced Si

gnal Concepts

2-28

1 At the MATLAB command prompt, type doc_buffer_tutt.

The Buffer Example T1 model opens.

=] doc_buffer_tuti 10l =l
File Edit Wiew Simulakion Format Tools Help
Dlﬁn@|%ﬁl@=ﬁ?|9f_"|} II1D.U INDrmaI j|
|Buﬁer E){ample T1 I In this example, the Buffer bladk rebuffers the signal ta a larger frame size.
Terminator Terrninatc-r1
T=[0 3] |Probe T=[00] |Probed
& &
-1
1:1000 - B FFT] zp_examples wout
Signal From Butter FFT Signal To
Mo tsp ace Winhepace
Mote: Thizs model creates a wokspace variable called "sp_examples yout".
Cloging the model clearsthe "zp_sxamples_wout' variable from yourmobspace.
Ready [100% | | [FixedStepDiscrete v

2 Double-click the Signal From Workspace block. The Block Parameters:
Signal From Workspace dialog box opens.

3 Set the parameters as follows:

Signal = 1:1000

Sample time = 0.125

Samples per frame = 8

Form output after final data value = Setting to zero

Based on these parameters, the Signal from Workspace block outputs a
frame-based signal with a sample period of 0.125 second. Each output
frame contains eight samples.

4 Save these parameters and close the dialog box by clicking OK.

Converting Sample and Frame Rates

5 Double-click the Buffer block. The Block Parameters: Buffer dialog
box opens.

6 Set the parameters as follows, and then click OK:
¢ Output buffer size (per channel) = 16
¢ Buffer overlap =0
¢ Initial conditions = 0

Based on these parameters, the Buffer block rebuffers the signal from a
frame size of 8 to a frame size of 16.

7 Run the model.

The following figure shows the model after simulation.

E! doc_buffer_kutl ;lglﬂ

File Edit Wiew Simulakion Format Tools Help

Dlﬁn@|éﬁﬁl¢$?|f}q|b II1D.EI INDrmaI j|

| Buffer E){ample T1 I In this example, the Buffer block rebutfers the signal to a larger frame size.

Terminator Terrninatc-r1

TH[10] |Probe TH[20] |Probed
f 3 f 3
[Ex1] [16x1]
[Ex1] 1 [16x1] [16x1]
1:1000 =l i) e FFT] zp_examples wout

Signal Fram FFT -
Ull?orhs e Bluffer Signal Tao

P iafepace

Mote: Thizs model creates a wokspace variable called "sp_examples yout".
Cloging the model clearsthe "zp_sxamples_wout' variable from yourmobspace.

Ready [100% | | [FixedStepDiscrete v

Note that the input to the Buffer block has a frame size of 8 and the output
of the block has a frame size of 16. As shown by the Probe blocks, the
rebuffering process doubles the frame period from 1 to 2 seconds.

2-29

2 Advanced Si

gnal Concepts

2-30

Buffering with Alteration of the Signal

Some forms of buffering alter the signal’s data or sample period in addition to
adjusting the frame size. In the following example, a signal with a sample
period of 0.125 second is rebuffered from a frame size of 8 to a frame size

of 16 with a buffer overlap of 4:

1 At the MATLAB command prompt, type doc_buffer_tut2.

The Buffer Example T2 model opens.

-iax]
File Edit VYiew Simulation Format Tools Help
DID”E%I&%EI%@{HDQI) II'ID.D INormaI ﬂl

[Buffer Example T2 |

In this example, the Buffer blods rebuffers the signal to a larger frame size while
overlapping 4 zamples perframe.

Tetminatol

Terminator‘1

A:4000

Signal From
Wiotsp ace

Ready

T=[00] |Probe T=[00] |Probe
Fy Fy
- | FFT | zp_examples yout

FFT Signal To

Buffer Mokepace
Mote: This model creates 3 wokspace variable called "sp_examples_yout”.
Clozing the model clearsthe "sp_sxamples_wout' variable from yourmobspace.

[100% | | |FixedstepDiscrete

2 Double-click the Signal From Workspace block. The Block Parameters:
Signal From Workspace dialog box opens.

3 Set the parameters as follows:

e Signal = 1:1000

* Sample time = 0.125

* Samples per frame = 8

Converting Sample and Frame Rates

* Form output after final data value = Setting to zero

Based on these parameters, the Signal from Workspace block outputs a
frame-based signal with a sample period of 0.125 second. Each output
frame contains eight samples.

4 Save these parameters and close the dialog box by clicking OK.

5 Double-click the Buffer block. The Block Parameters: Buffer dialog
box opens.
6 Set the parameters as follows, and then click OK:
¢ Output buffer size (per channel) = 16
¢ Buffer overlap = 4
¢ Initial conditions = 0

Based on these parameters, the Buffer block rebuffers the signal from a
frame size of 8 to a frame size of 16. Also, after the initial output, the first
four samples of each output frame are made up of the last four samples

from the previous output frame.

2-31

2 Advanced Si

gnal Concepts

2-32

7 Run the model.

The following figure shows the model after the simulation has stopped.

E! doc_buffer_tut? ;lglil

File Edit Wiew Simulation Format Tools Help

DS EHS s8R |- 4|= @ » =fiog [Noma []] 3 =

In thizs example, the Buffer blod rebuffers the signal to a larger frame size while
|BUﬁer Example T2 I averlapping 4 samples per frame.

Terminator Telminator1

TH[M10] |Probe TE[1.50] |Probed
f 3 f 3
[Ex1] [16x1]
1:1000 [Ex1] 5] i [16x1] o] = FFT (16x1] P =zp_sxamples_wout
Zignal From B FFT Signal To
Wiokspace uter o kesp ace

Mote: This model creates a wodspace wariable called "sp_examples_yout'.
Clozing the model elears the "sp_examples_wout' variable from yourworkspace,

Ready 100%s FixedStepDiscrete
&

Note that the input to the Buffer block has a frame size of 8 and the output
of the block has a frame size of 16. The relation for the output frame period
for the Buffer block is

Ty = (M, ~ L)T;

T, 1s (16-4)*0.125, or 1.5 seconds, as confirmed by the second Probe block.
The sample period of the signal at the output of the Buffer block is no

longer 0.125 second. It is now Ty, =T, /M, =1.5/16 = 0.0938 second.
Thus, both the signal’s data and the signal’s sample period have been
altered by the buffering operation.

Converting Frame Status

Converting Frame Status

In this section...

“Frame Status” on page 2-33
“Buffering Sample-Based Signals into Frame-Based Signals” on page 2-33

“Buffering Sample-Based Signals into Frame-Based Signals with Overlap”
on page 2-37

“Buffering Frame-Based Signals into Other Frame-Based Signals” on page
2-41

“Buffering Delay and Initial Conditions” on page 2-44

“Unbuffering Frame-Based Signals into Sample-Based Signals” on page
2-45

Frame Status

The frame status of a signal refers to whether the signal is sample based or
frame based. In a Simulink model, the frame status is symbolized by a single
line ,—, for a sample-based signal and a double line, = for a frame-based
signal. One way to convert a sample-based signal to a frame-based signal

is by using the Buffer block. You can convert a frame-based signal to a
sample-based signal using the Unbuffer block. To change the frame status of
a signal without performing a buffering operation, use the Frame Conversion
block in the Signal Attributes library.

Buffering Sample-Based Signals into Frame-Based
Signals

Multichannel sample-based and frame-based signals can be buffered into
multichannel frame-based signals using the Buffer block.

2-33

2 Advanced Signal Concepts

2-34

The following figure is a graphical representation of a sample-based signal
being converted into a frame-based signal by the Buffer block.

somple 1 |:> g
sumple 2 Buffer @
somple 3
sample 4 E
sumple 5 K

=
sonple 8. == o Le) o
thl th? ch3 che
Multichannel sample-based signal: Multichannel frame -hased signal:
4 thonnels

4 chunnels, & somples per frome

In the following example, a two-channel sample-based signal is buffered into
a two-channel frame-based signal using a Buffer block:

Converting Frame Status

1 At the MATLAB command prompt, type doc_buffer_tut.

The Buffer Example model opens.

EI doc_huffer_tut ;lglﬂ

File Edit Wiew Simulation Format Tools Help

DeEHE| BR[| 4|2 & » II1D.U | Narmal =]

In this example, the Buffer blodk buffers a3 2-channel zample-based
signal into a Z2-channel frame-based signal.

|Buffer Example |

[t2] B =p_sxamples yout
Signal Fram Signal To
Wirgep 3ce Buffer o hepace

Mote: Thiz maodel creates 3 wokspace variable called "sp_e=amples_yout".
Closing the model clears the "sp_examples_wout" variable from wour wordspace.

Ready 100% FixedStepliscrete
A

2 Double-click the Signal From Workspace block. The Block Parameters:
Signal From Workspace dialog box opens.

3 Set the parameters as follows:
® Signal=[1:10;-1:-1:-10]"
e Sample time = 1
¢ Samples per frame = 1

¢ Form output after final data value = Setting to zero

Based on these parameters, the Signal from Workspace block outputs a
sample-based signal with a sample period of 1 second. Because you set the
Samples per frame parameter setting to 1, the Signal From Workspace
block outputs one two-channel sample at each sample time.

4 Save these parameters and close the dialog box by clicking OK.

2-35

2 Advanced Signal Concepts

2-36

5 Double-click the Buffer block. The Block Parameters: Buffer dialog
box opens.

6 Set the parameters as follows:
¢ Output buffer size (per channel) = 4
¢ Buffer overlap =0

e Initial conditions = 0

Because you set the Output buffer size parameter to 4, the Buffer block
outputs a frame-based signal with frame size 4.

7 Run the model.

Note that the input to the Buffer block is sample based (represented as a
single line) while the output is frame-based (represented by a double line).

The figure below is a graphical interpretation of the model behavior during

[1:10;-1:-1:-107

Signal From
o tspace

simulation.
— 1-1
014 41— [3 3]~ [2 -2 [1 -1] —» LRELIZ 2 o =p_exampies your
t=3 t=2 t=1 t=0 4 -4 Signal To
Buffer o hsp ace

T

Four consecutive samples from a :
2-channel frame-based signal

2-channel sample-based signal

Note Alternatively, you can set the Samples per frame parameter of the
Signal From Workspace block to 4 and create the same frame-based signal
shown above without using a Buffer block. The Signal From Workspace
block performs the buffering internally, in order to output a two-channel
frame-based signal.

Converting Frame Status

Buffering Sample-Based Signals into Frame-Based
Signals with Overlap

In some cases it is useful to work with data that represents overlapping
sections of an original sample-based or frame-based signal. For example, in
estimating the power spectrum of a signal, it is often desirable to compute the
FFT of overlapping sections of data. Overlapping buffers are also needed in
computing statistics on a sliding window, or for adaptive filtering.

The Buffer overlap parameter of the Buffer block specifies the number of
overlap points, L. In the overlap case (L > 0), the frame period for the output
is (M -L)*T;, where T, is the input sample period and M, is the Buffer size.

7

Note Set the Buffer overlap parameter to a negative value to achieve
output frame rates slower than in the nonoverlapping case. The output frame
period is still T *(M -L), but now with L < 0. Only the M_ newest inputs are
included in the output buffers. The previous L inputs are discarded.

In the following example, a four-channel sample-based signal with sample
period 1 is buffered to a frame-based signal with frame size 3 and frame
period 2. Because of the buffer overlap, the input sample period is not
conserved, and the output sample period is 2/3:

2-37

2 Advanced Signal Concepts

1 At the MATLAB command prompt, type doc_buffer_ tut3.

The Buffer Example T3 model opens.

-1l
File Edit Wiew Simulation Format Tools Help
D|Ewn§|%é|<:==p?|iﬁf_" 2 l|1EI.EI INDrmaI j|

In thiz example, the Buffer blodk buffers a sample-based signal to a frame-based
|BLIffEI‘ E}{ﬂmple TS signal with 1-zample owverlap.

sp_examples_sre b————Ji] ——————— P =p_examples_yout

Signal From

Signal To
Watspace Buffer

Miadespace

Maote: This model creates the wodspace wariables "sp_examples_srd' and "sp_examples_yout'.
Closing the model clears both wariables fram your wadspace.

Ready 100%: FixedStepDiscrete
v

Also, the variable sp_examples_src is loaded into the MATLAB workspace.
This variable is defined as follows:

sp_examples src = [1 15 -1; 215 -2; 305 -3; 405 -4; 515 -5; 615 -6];

2 Double-click the Signal From Workspace block. The Block Parameters:
Signal From Workspace dialog box opens.

3 Set the block parameters as follows:
® Signal = sp_examples_src
e Sample time = 1

e Samples per frame = 1

2-38

Converting Frame Status

* Form output after final data value by = Setting to zero

Based on these parameters, the Signal from Workspace block outputs a
sample-based signal with a sample period of 1 second. Because you set the
Samples per frame parameter setting to 1, the Signal From Workspace
block outputs one four-channel sample at each sample time.

4 Save these parameters and close the dialog box by clicking OK.

5 Double-click the Buffer block. The Block Parameters: Buffer dialog
box opens.
6 Set the block parameters as follows, and then click OK:
¢ Output buffer size (per channel) =3
¢ Buffer overlap = 1
¢ Initial conditions = 0

Because you set the Output buffer size parameter to 3, the Buffer block
outputs a frame-based signal with frame size 3. Also, because you set the
Buffer overlap parameter to 1, the last sample from the previous output
frame is the first sample in the next output frame.

2-39

2 Advanced Signal Concepts

7 Run the model.

Note that the input to the Buffer block is sample based (represented as a
single line) while the output is frame based (represented by a double line).

The following figure is a graphical interpretation of the model’s behavior
during simulation.

EEE EEE
thi thd
—| |_ Sample-hased input,
t=5 [6 1 5 ¢ sample period = T,
Ti=1
t=4 [5 1 5 3
Frame-hased output,
t=3 [+ 0 5 frome perind = [M,-1)#+T;
_ first
1=2 R first sumple-bose d frome-bosed
-1 [a _a input output
n— —14 Z2EE E22E ETE
t=0 [1 1 51
-1 405+ 215 -2 0000 noog
: 5155 305 -3 L1 5-1 0ooo
6 L 5 -6 4+ 05—+ 21 5-2 oooo
Bufter =6 I=4 =2 -0
(M=3, L=1]

8 At the MATLAB command prompt, type sp_examples_yout.
The following is displayed in the MATLAB Command Window.

sp_examples_yout =

A ONMDNM—=OOOO
OO0 =+~ 2 2 00O0O0

oo 010101 ©O O OO
1
—_

2-40

Converting Frame Status

-4
-5
-6

OO OO OoOCoOoO O M
OO0 000 =+ =+ 20
OO OOOou o o’
O OO oo

Notice that the inputs do not begin appearing at the output until the fifth
row, the second row of the second frame. This is due to the block’s latency.

See “Excess Algorithmic Delay (Tasking Latency)” on page 2-57 for general
information about algorithmic delay. For instructions on how to calculate
buffering delay, see “Buffering Delay and Initial Conditions” on page 2-44.

Buffering Frame-Based Signals into Other
Frame-Based Signals

In the following example, a two-channel frame-based signal with frame size 4
is rebuffered to a frame-based signal with frame size 3 and frame period 2.
Because of the overlap, the input sample period is not conserved, and the
output sample period is 2/3:

2-41

2 Advanced Signal Concepts

1 At the MATLAB command prompt, type doc_buffer_tut4.

The Buffer Example T4 model opens.

=101 x|
File Edit “iew Simulation Format Tools Help
D|Ewn§|%é|<:==p?|iﬁf_" 2 l|1EI.EI INDrmaI j|

In thiz example, the Buffer block rebuffers 3 frame-baszed signal with frame size 4
|BL|ffer E}(ample Td to a frame size of 3 using 1-zample of overlap.

sp_examples_sre — Jin] — | =p_examples_yout

Signal Fram Signal Ta
Watksp ace Buffer Wiratspace

Mote: This model creates the wodspace wariables "sp_examples_sre" and "sp_examples yout'.
Closing the model clears both wariables from your vwaksp ace.

Ready 100%: FixedstepDiscrete
A

Also, the variable sp_examples_src is loaded into the MATLAB workspace.
This variable is defined as

sp_examples_src = [1 1; 2 1; 3 0; 40; 51; 6 1; 7 0; 8 0]

2 Double-click the Signal From Workspace block. The Block Parameters:
Signal From Workspace dialog box opens.

3 Set the block parameters as follows:
® Signal = sp_examples_src

* Sample time = 1

2-42

Converting Frame Status

® Samples per frame = 4

Based on these parameters, the Signal From Workspace block outputs a
two-channel, frame-based signal with a sample period of 1 second and a
frame size of 4.

4 Save these parameters and close the dialog box by clicking OK.

5 Double-click the Buffer block. The Block Parameters: Buffer dialog
box opens.

6 Set the block parameters as follows, and then click OK:
¢ Output buffer size (per channel) =3
¢ Buffer overlap = 1

e Initial conditions = 0

Based on these parameters, the Buffer block outputs a two-channel,
frame-based signal with a frame size of 3.

7 Run the model.

The following figure is a graphical representation of the model’s behavior

during simulation.
00 oo
00 oo
00 oo

t=1 t=0

first nqumJ

Input frome period = 44T Output frome period = [M,-L)+T;

chl
th?
chl
th?
chl
th?
th
th?
chl
th?
thl
th?

L1

1
EBuffer
=3, 1=1) =10 =B 1=

T
Iy
-1 & L
o~ —
L reere—|
b + -
==
e =1
2= -,

o
m
=

G -~ & e

[
ﬁ"-a-uum»—th]
= 20 = —,rh?

first input

Note that the inputs do not begin appearing at the output until the last row
of the third output matrix. This is due to the block’s latency.

2-43

2 Advanced Signal Concepts

2-44

See “Excess Algorithmic Delay (Tasking Latency)” on page 2-57 for general
information about algorithmic delay. For instructions on how to calculate
buffering delay, and see “Buffering Delay and Initial Conditions” on page 2-44.

Buffering Delay and Initial Conditions

In the examples “Buffering Sample-Based Signals into Frame-Based Signals
with Overlap” on page 2-37 and “Buffering Frame-Based Signals into Other
Frame-Based Signals” on page 2-41, the input signal is delayed by a certain
number of samples. The initial output samples correspond to the value
specified for the Initial condition parameter. The initial condition is zero
in both examples mentioned above.

Under most conditions, the Buffer and Unbuffer blocks have some amount of
delay or latency. This latency depends on both the block parameter settings
and the Simulink tasking mode. You can use the rebuffer_delay function
to determine the length of the block’s latency for any combination of frame
size and overlap.

The syntax rebuffer_delay(f,n,v) returns the delay, in samples,
introduced by the buffering and unbuffering blocks during multitasking
operations, where f is the input frame size, n is the Qutput buffer size
parameter setting, and v is the Buffer overlap parameter setting.

For example, you can calculate the delay for the model discussed in the
“Buffering Frame-Based Signals into Other Frame-Based Signals” on page
2-41 using the following command at the MATLAB command line:

d
d

rebuffer_delay(4,3,1)
8

This result agrees with the block’s output in that example. Notice that this
model was simulated in Simulink multitasking mode.

For more information about delay, see “Excess Algorithmic Delay (Tasking
Latency)” on page 2-57. For delay information about a specific block, see the
“Latency” section of the block reference page. For more information about the
rebuffer_delay function, see rebuffer_delay

Converting Frame Status

Unbuffering Frame-Based Signals into Sample-Based
Signals

You can unbuffer multichannel frame-based signals into multichannel
sample-based signals using the Unbuffer block. The Unbuffer block performs
the inverse operation of the Buffer block’s “sample-based to frame-based”
buffering process, and generates an N-channel sample-based output from an
N-channel frame-based input. The first row in each input matrix is always
the first sample-based output.

The following figure is a graphical representation of this process.

|:> sumple E|
sample 5
somple 3
sample 2
somple 1

thl th2 ch3 chd

Multichamnel frame-hased signal: Multichannel sample -bhased signal:
4 chonnels, 6 samples per frame 4 thonnels

The sample period of the sample-based output, T, is related to the input
frame period, T}, by the input frame size, M,

79

Ty =Ty | M;

The Unbuffer block always preserves the signal’s sample period (T, = T.).
See “Converting Sample and Frame Rates” on page 2-11 for more information
about rate conversions.

2-45

2 Advanced Signal Concepts

In the following example, a two-channel frame-based signal is unbuffered into
a two-channel sample-based signal:

1 At the MATLAB command prompt, type doc_unbuffer_tut.

The Unbuffer Example model opens.

-l

File Edit Wiew Simulation Format Tools Help
D|#u§|%ﬁl@¢?|9@l) l|1|1D IanmaI j

In this example, the Unbuffer block unbuffers 3 2-channel frame-baszed

| UnbUﬁer Example I signal into a 2-channel sample-based signal.

[1:40;-1:-1:-10]" [e<5] e [1x3] P sp_examples yout
e
Signal From Signal T
Unbutfer ‘gnat 1o

Wiotsp ace

Mokepace

Mote: Thiz model creates the wotepace wariable "sp_examples yout",
Closing the model clears the "sp_examples_yout" wariable from yourmodspace.

Ready 100%a FixedStepDiscrete
A

2 Double-click the Signal From Workspace block. The Block Parameters:
Signal From Workspace dialog box opens.

3 Set the block parameters as follows:

Signal = [1:10;-1:-1:-10]"

Sample time = 1

Samples per frame = 4

* Form output after final data value by = Setting to zero

Based on these parameters, the Signal From Workspace block outputs a
two-channel, frame based-signal with frame size 4.

2-46

Converting Frame Status

[1:40;-1:-1:-10]

il

Signal From
rakspace

2-channel frame-based signal

4 Save these parameters and close the dialog box by clicking OK.

5 Double-click the Unbuffer block. The Block Parameters: Unbuffer
dialog box opens.

6 Set the Initial conditions parameter to 0, and then click OK.

The Unbuffer block unbuffers the frame-based signal into a two-channel
sample-based signal.

7 Run the model.

The following figures is a graphical representation of what happens during
the model simulation.

—» 2 g 4] [3 3] = [2 2] -[1 -1] -] sp_examples_yout
e

=~ —
O O

Unbuffer t=17 t=6 t=5 t=4 Signal Ta

T Wakspace

Four consecutive samples from a
2-channel sample-based signal

Note The Unbuffer block generates initial conditions not shown in the
figure below with the value specified by the Initial conditions parameter.

See the Unbuffer reference page for information about the number of initial
conditions that appear in the output.

8 At the MATLAB command prompt, type sp_examples_yout.
The following is a portion of the output.
sp_examples_yout(:,:,1) =

0 0

2-47

2 Advanced Signal Concepts

sp_examples_yout(:,:,2) =

0 0

sp_examples_yout(:,:,3) =

0 0

sp_examples_yout(:,:,4) =

0 0

sp_examples_yout(:,:,5) =

1 -1

sp_examples_yout(:,:,6) =

2 -2

sp_examples_yout(:,:,7) =
3 -3
The Unbuffer block unbuffers the frame-based signal into a two-channel,

sample-based signal. Each page of the output matrix represents a different
sample time.

2-48

Delay and Latency

Delay and Latency

In this section...

“Computational Delay” on page 2-49

“Algorithmic Delay” on page 2-51

“Zero Algorithmic Delay” on page 2-51

“Basic Algorithmic Delay” on page 2-54

“Excess Algorithmic Delay (Tasking Latency)” on page 2-57

“Predicting Tasking Latency” on page 2-59

Computational Delay

The computational delay of a block or subsystem is related to the number
of operations involved in executing that block or subsystem. For example,
an FFT block operating on a 256-sample input requires Simulink software
to perform a certain number of multiplications for each input frame. The
actual amount of time that these operations consume depends heavily on the
performance of both the computer hardware and underlying software layers,
such as the MATLAB environment and the operating system. Therefore,
computational delay for a particular model can vary from one computer
platform to another.

The simulation time represented on a model’s status bar, which can

be accessed via the Simulink Digital Clock block, does not provide any
information about computational delay. For example, according to the
Simulink timer, the FFT mentioned above executes instantaneously, with
no delay whatsoever. An input to the FFT block at simulation time t=25.0
is processed and output at simulation time t=25.0, regardless of the number
of operations performed by the FFT algorithm. The Simulink timer reflects
only algorithmic delay, not computational delay.

Reducing Computational Delay

There are a number of ways to reduce computational delay without actually
running the simulation on faster hardware. To begin with, you should
familiarize yourself with “Improving Simulation Performance and Accuracy”
in the Simulink documentation, which describes some basic strategies. The

2-49

2 Advanced Signal Concepts

2-50

following information discusses several additional options for improving
performance.

A first step in improving performance is to analyze your model, and eliminate
or simplify elements that are adding excessively to the computational load.
Such elements might include scope displays and data logging blocks that you
had put in place for debugging purposes and no longer require. In addition to
these model-specific adjustments, there are a number of more general steps
you can take to improve the performance of any model:

e Use frame-based processing wherever possible. It is advantageous for the
entire model to be frame based. See “Benefits of Frame-Based Processing”
on page 1-16 for more information.

® Use the dspstartup file to tailor Simulink for signal processing models, or
manually make the adjustments described in “Settings in dspstartup.m” in
the Signal Processing Blockset Getting Started Guide.

e Turn off the Simulink status bar by deselecting the Status bar option in
the View menu. Simulation speed will improve, but the time indicator
will not be visible.

¢ Run your simulation from the MATLAB command line by typing
sim(gcs)

This method of starting a simulation can greatly increase the simulation
speed, but also has several limitations:

= You cannot interact with the simulation (to tune parameters, for
instance).

= You must press Ctrl+C to stop the simulation, or specify start and
stop times.

= There are no graphics updates in M-file S-functions, which include
blocks such as Vector Scope, etc.

e Use Real-Time Workshop code generation software to generate generic
real-time (GRT) code targeted to your host platform, and run the model
using the generated executable file. See the Real-Time Workshop
documentation for more information.

Delay and Latency

Algorithmic Delay

Algorithmic delay is delay that is intrinsic to the algorithm of a block or
subsystem and is independent of CPU speed. In Signal Processing Blockset
Reference and elsewhere in this guide, the algorithmic delay of a block is
referred to simply as the block’s delay. It is generally expressed in terms of the
number of samples by which a block’s output lags behind the corresponding
input. This delay is directly related to the time elapsed on the Simulink timer
during that block’s execution.

The algorithmic delay of a particular block may depend on both the block
parameter settings and the general Simulink settings. To simplify matters, it
is helpful to categorize a block’s delay using the following categories:

e “Zero Algorithmic Delay” on page 2-51
* “Basic Algorithmic Delay” on page 2-54
* “Excess Algorithmic Delay (Tasking Latency)” on page 2-57

The following topics explain the different categories of delay, and how
the simulation and parameter settings can affect the level of delay that a
particular block experiences.

Zero Algorithmic Delay

The FFT block is an example of a component that has no algorithmic delay.
The Simulink timer does not record any passage of time while the block
computes the FFT of the input, and the transformed data is available at the
output in the same time step that the input is received. There are many other
blocks that have zero algorithmic delay, such as the blocks in the Matrices
and Linear Algebra libraries. Each of those blocks processes its input and
generates its output in a single time step.

In the Signal Processing Blockset Reference blocks are assumed to have zero
delay unless otherwise indicated. If a block has zero delay for one combination
of parameter settings but nonzero delay for another, the block reference page
contains this fact.

The Normalization block is an example of a block with zero algorithmic delay:

1 At the MATLAB command prompt, type doc_normalization_ tut.

2-51

2 Advanced Si

gnal Concepts

2-52

The Normalization Example T1 model opens.

=

File Edit Wiew Simulation Format Tools Help

I = = = == - T i l|5 |N0rmal Y| B B |

In this example, yvou can obsernce that the Mormalization block
introduces no delay.

[Normalization Example T1 |

Digital Sloc ki
u dsp_emamnples_ywout
1:100 - S
[l Sample
- To Wiorkspace
Signal Fmm o malzation Frame Conversion
Wiorkspace
Mote: This model creates a wotkspace wariable called "dsp_examples_wyout'.
Ready |1o0es [[|Fixedstepiscrete v

2 Double-click the Signal From Workspace block. The Block Parameters:
Signal From Workspace dialog box opens.

3 Set the block parameters as follows:
e Signal =1:100
e Sample time = 1/4
e Samples per frame = 4

4 Save these parameters and close the dialog box by clicking OK.

5 Double-click the Frame Conversion block. The Block Parameters:
Frame Conversion dialog box opens.

6 Set the Output signal parameter to Sample based, and then click OK.

7 Run the model.

Delay and Latency

The model prepends the current value of the Simulink timer output from
the Digital Clock block to each output frame. The Frame Conversion block
converts the frame-based signal to a sample-based signal so that the output
in the MATLAB Command Window is more easily readable.

The Signal From Workspace block generates a new frame containing four
samples once every second (T}, = m*4). The first few output frames are:

(t=0) [1 2 3 4]
(t=1) [5 6 7 8]
(t=2) [9 10 11 12]"'
(t=3) [13 14 15 16]"
(t=4) [17 18 19 20]"'

At the MATLAB command prompt, type squeeze (dsp_examples_yout)'.

The normalized output, dsp_examples_yout, is converted to an
easier-to-read matrix format. The result, ans, is shown in the following
figure:

ans =
0 0.0333 0.0667 0.1000 0.1333
1.0000 0.0287 0.0345 0.0402 0.0460
2.0000 0.0202 0.0224 0.0247 0.0269
3.0000 0.0154 0.0165 0.0177 0.0189
4.0000 0.0124 0.0131 0.0138 0.0146
5.0000 0.0103 0.0108 0.0113 0.0118

The first column of ans is the Simulink time provided by the Digital Clock
block. You can see that the squared 2-norm of the first input,

[1 23 41" ./ sum([1 2 3 4]'.72)
appears in the first row of the output (at time ¢=0), the same time step that

the input was received by the block. This indicates that the Normalization
block has zero algorithmic delay.

2-53

2 Advanced Signal Concepts

2-54

Zero Algorithmic Delay and Algebraic Loops

When several blocks with zero algorithmic delay are connected in a feedback
loop, Simulink may report an algebraic loop error and performance may
generally suffer. You can prevent algebraic loops by injecting at least one
sample of delay into a feedback loop , for example, by including a Delay block
with Delay > 0. For more information, see “Algebraic Loops” in the Simulink
documentation.

Basic Algorithmic Delay

The Variable Integer Delay block is an example of a block with algorithmic
delay. In the following example, you use this block to demonstrate this
concept:

1 At the MATLAB command prompt, type doc_variableintegerdelay tut.

The Variable Integer Delay Example T1 opens.

_nix]
File Edit View Simulation Format Tools Help
DIFHE| 4 =B|ect |22 » af o S B

In this examgle, the Variatle Integer Delay blogk

[Variable Integer Delay Example T1 |

introduces basic d

slay.

1:100

Signal From

Worsgacs
Constant

Motz Thiz model orestes 3 wodsoaos varisole called "dio_sxameolzs_yout

Ready 100% FixedStepDiscrete
A

2 Double-click the Signal From Workspace block. The Block Parameters:
Signal From Workspace dialog box opens.

3 Set the block parameters as follows:

Delay and Latency

® Signal =1:100
* Sample time = 1
® Samples per frame = 1

4 Save these parameters and close the dialog box by clicking OK.

5 Double-click the Constant block. The Block Parameters: Constant
dialog box opens.

6 Set the block parameters as follows:
* Constant value = 3
* Interpret vector parameters as 1-D = Clear this check box
* Sampling mode = Sample based
* Sample time = 1

Click OK to save these parameters and close the dialog box.

The input to the Delay port of the Variable Integer Delay block specifies
the number of sample periods that should elapse before an input to the In
port is released to the output. This value represents the block’s algorithmic
delay. In this example, since the input to the Delay port is 3, and the
sample period at the In and Delay ports is 1, then the sample that arrives
at the block’s In port at time ¢=0 is released to the output at time ¢=3.

7 Double-click the Variable Integer Delay block. The Block Parameters:
Variable Integer Delay dialog box opens.

8 Set the Initial conditions parameter to -1, and then click OK.

9 From the Format menu, point to Port/Signal Displays, and select
Signal Dimensions and Wide Nonscalar Lines.

10 Run the model.

The model should look similar to the following figure.

2-55

2 Advanced Signal Concepts

E!dnc_vaﬁableintegerdelav_tut _|_|- | il
File Edit Wiew Simulation Format Tools Help
D SHES| 2B o (22| af [om = 3 e
. In this examgle, the Variskls Integer Delsy oloo
[Variable Integer Delay Example T1] ™ ==7°" ’ 3
Digital Clodk
1:100 P I . dsp_sxsmples_yout
- _z-I ot
Signal From Delsy Te Werkspsos
Weorkspaos Varistls
Integer Delay
C:rstsrt
MNate: This maode| oreates a wordespacs variable called "dsp_sexamples_yout
Ready [100% [[|FixedstepDiscrete v

11 At the MATLAB command prompt, type dsp_examples_yout

2-56

The output is shown below:

dsp_examples_yout

-1
-1
-1
]
2
3

a b OwON-—=O

The first column is the Simulink time provided by the Digital Clock block.
The second column is the delayed input. As expected, the input to the block
at t=0 is delayed three samples and appears as the fourth output sample,
at t=3. You can also see that the first three outputs from the Variable
Integer Delay block inherit the value of the block’s Initial conditions
parameter, -1. This period of time, from the start of the simulation until

the first input is propagated to the output,

delay of the block.

is sometimes called the initial

Delay and Latency

Many Signal Processing Blockset blocks have some degree of fixed or
adjustable algorithmic delay. These include any blocks whose algorithms
rely on delay or storage elements, such as filters or buffers. Often, but not
always, such blocks provide an Initial conditions parameter that allows you
to specify the output values generated by the block during the initial delay. In
other cases, the initial conditions are internally set to 0.

Consult the block reference pages for the delay characteristics of specific
Signal Processing Blockset blocks.

Excess Algorithmic Delay (Tasking Latency)

Under certain conditions, Simulink may force a block to delay inputs longer
than is strictly required by the block’s algorithm. This excess algorithmic
delay is called tasking latency, because it arises from synchronization
requirements of the Simulink tasking mode. A block’s overall algorithmic
delay is the sum of its basic delay and tasking latency.

Algorithmic delay = Basic algorithmic delay + Tasking latency

The tasking latency for a particular block may be dependent on the following
block and model characteristics:

“Simulink Tasking Mode” on page 2-57

“Block Rate Type” on page 2-58

“Model Rate Type” on page 2-58
“Block Sample Mode” on page 2-59

Simulink Tasking Mode

Simulink has two tasking modes:

® Single-tasking
e Multitasking
To select a mode, from the Simulation menu, select Configuration

Parameters. In the Select pane, click Solver. From the Type list, select
Fixed-step. From the Tasking mode for periodic sample times list,

2-57

2 Advanced Signal Concepts

2-58

choose SingleTasking or MultiTasking. If, from the Tasking mode

for periodic sample times list you select Auto, the simulation runs in
single-tasking mode if the model is single-rate, or multitasking mode if the
model is multirate.

Note Many multirate blocks have reduced latency in the Simulink
single-tasking mode. Check the “Latency” section of a multirate block’s
reference page for details. Also see “Scheduling Considerations” in the
Real-Time Workshop User’s Guide.

Block Rate Type

A block is called single-rate when all of its input and output ports operate at
the same frame rate. A block is called multirate when at least one input or
output port has a different frame rate than the others.

Many blocks are permanently single-rate. This means that all input and
output ports always have the same frame rate. For other blocks, the block
parameter settings determine whether the block is single-rate or multirate.
Only multirate blocks are subject to tasking latency.

Note Simulink may report an algebraic loop error if it detects a feedback loop
composed entirely of multirate blocks. To break such an algebraic loop, insert
a single-rate block with nonzero delay, such as a Unit Delay block. See the
Simulink documentation for more information about “Algebraic Loops”.

Model Rate Type

When all ports of all blocks in a model operate at a single frame rate, the
model is called single-rate. When the model contains blocks with differing
frame rates, or at least one multirate block, the model is called multirate.
Note that Simulink prevents a single-rate model from running in multitasking
mode by generating an error.

Delay and Latency

Block Sample Mode

Many blocks can operate in either sample-based or frame-based modes. In
source blocks, the mode is usually determined by the Samples per frame
parameter. If, for the Samples per frame parameter, you enter 1, the block
operates in sample-based mode. If you enter a value greater than 1, the block
operates in frame-based mode. In nonsource blocks, the sample mode is
determined by the input signal. See the block reference pages for additional
information about specific blocks.

Predicting Tasking Latency

The specific amount of tasking latency created by a particular combination
of block parameter and simulation settings is discussed in the “Latency”
section of a block’s reference page. In this topic, you use the Upsample block’s
reference page to predict the tasking latency of a model:

1 At the MATLAB command prompt, type doc_upsample tuti.

The Upsample Example T1 model opens.

~Ioix

File Edit WYiew Simulation Format Tools Help

DEEES| st BR[|k af [Momal]| O 4 [3) 2 B | B

| Upsample Example T I In thiz example, the Upzample block introduces 17 zamples of delay.

Drigital Shack
d=sp_examples_wout
. . o Ta
1:100 > T 4 ™ Sampk
- To Workspace
Signal Fom Upsample Frame Comersion
Woarkspace
¥ h i
FPmobe| Ts:[00] Frobel| T=[00]
Teminato r Teminator
Mote: This model creates a voodspace variable called "dsp_sxamples_yout".
Ready [100% [[FixedstepDiscrete &

2-59

2 Advanced Signal Concepts

2 From the Simulation menu, select Configuration Parameters.

3 In the Solver pane, from the Type list, select Fixed-step. From the
Solver list, select Discrete (no continuous states).

4 From the Tasking mode for periodic sample times list, select
MultiTasking, and then click OK.

Most multirate blocks experience tasking latency only in the Simulink
multitasking mode.

5 Double-click the Signal From Workspace block. The Block Parameters:
Signal From Workspace dialog box opens.

6 Set the block parameters as follows, and then click OK:
e Signal =1:100
e Sample time = 1/4

e Samples per frame = 4

7 Double-click the Upsample block. The Block Parameters: Upsample
dialog box opens.

8 Set the block parameters as follows, and then click OK:
e Upsample factor = 4
e Sample offset = 0
® Initial condition = -1

* Frame-based mode = Maintain input frame size

The Frame-based mode parameter makes the model multirate, since the
input and output frame rates will not be equal.

9 Double-click the Digital Clock block. The Block Parameters: Digital
Clock dialog box opens.

10 Set the Sample time parameter to 0.25, and then click OK.

This matches the sample period of the Upsample block’s output.

2-60

Delay and Latency

11 Double-click the Frame Conversion block. The Block Parameters:
Frame Conversion dialog box opens.

12 Set the Output signal parameter of the to Sample based, and then click
OK.

13 Run the model.

The model should now look similar to the following figure.

—imix

File Edit View Simulation Faormat Tools Help

D@ E&E 2R |52 r nf [Noma = DDt [B) & | B

|Upsamp|e Example T1 I In this example, the Upsample blodk introduces 17 samples of delay.

Digital Clock
dsp_exammples_wout
1100 [dx1] » T [dx1] » Tao
Ta=1] 4 [a=1] Samplke
- To Wiorkspace
Signal From Upsample Frme Gonversion
‘Workspace
[ax1] [4x1]
L 2 L J
Fmbe| TH[10] ‘ Frobel| TH[0.25 0] |
Termina.hor Temninator]
Mote: This model creates a wotsp ace variable called "dzp_examples_yout".
Ready |100s [[[Fizeedstepbiscrete 4

The model prepends the current value of the Simulink timer, from the

Digital Clock block, to each output frame. The Frame Conversion block
converts the frame-based signal into a sample-based signal so that the

output in the MATLAB Command Window is easily readable.

In the example, the Signal From Workspace block generates a new frame
containing four samples once every second (1,= n*4). The first few output
frames are:

(t=0) [1 2 3 4]
(t=1 [5 6 7 8]
(t= [9 10 11 12]

2-61

2 Advanced Signal Concepts

(t=3) [13 14 15 16]
(t=4) [17 18 19 20]

The Upsample block upsamples the input by a factor of 4, inserting three
zeros between each input sample. The change in rates is confirmed by the
Probe blocks in the model, which show a decrease in the frame period from
Ty =1to T = 0.25.

14 At the MATLAB command prompt, type squeeze (dsp_examples_yout)'.

2-62

The output from the simulation is displayed in a matrix format. The first
few samples of the result, ans, are:

ans =
0 -1.0000 0] 0 st autputframe
0.2500 -1.0000 0 o o
0.5000 -1.0000 0 0 0
0.7500 -1.0000 0]]
1.0000 0 0 0 Sthoutput frame
1.2500 2.0000 0]]
1.5000 3.0000 0]]
1.7500 4.,0000 0]]
2.0000 5.0000 0]]

fime

“Latency and Initial Conditions” in the Upsample block’s reference page
indicates that when Simulink is in multitasking mode, the first sample of
the block’s frame-based input appears in the output as sample M,L+D+1,
where M. is the input frame size, L is the Upsample factor, and D is the
Sample offset. This formula predicts that the first input in this example
should appear as output sample 17 (that is, 4*4+0+1).

The first column of the output is the Simulink time provided by the Digital
Clock block. The four values to the right of each time are the values in
the output frame at that time. You can see that the first sample in each
of the first four output frames inherits the value of the Upsample block’s
Initial conditions parameter. As a result of the tasking latency, the first
input value appears as the first sample of the 5th output frame (at ¢=1).
This is sample 17.

Delay and Latency

Now try running the model in single-tasking mode.
15 From the Simulation menu, select Configuration Parameters.

16 In the Solver pane, from the Type list, select Fixed-step. From the
Solver list, select Discrete (no continuous states).

17 From the Tasking mode for periodic sample times list, select
SingleTasking.

18 Run the model.
The model now runs in single-tasking mode.
19 At the MATLAB command prompt, type squeeze (dsp_examples_yout)'.

The first few samples of the result, ans, are:

ans =
0 1.0000 0 0 o lstoutputframe
0.2500 2.0000 0 0 0
0.5000 3.0000 0 0 0
0.7500 4.0000 0 0 0
1.0000 5.0000 0 0 o Sthoutpet frame
1.2500 6.0000 0 0 0
1.5000 7.0000 0 0 0
1.7500 8.0000] 0 0
2.0000 g.0000]]]

fime

“Latency and Initial Conditions” in the Upsample block’s reference page
indicates that the block has zero latency for all multirate operations in
the Simulink single-tasking mode.

The first column of the output is the Simulink time provided by the Digital
Clock block. The four values to the right of each time are the values in the
output frame at that time. The first input value appears as the first sample
of the first output frame (at ¢t=0). This is the expected behavior for the
zero-latency condition. For the particular parameter settings used in this
example, running upsample_tut1 in single-tasking mode eliminates the

2-63

2 Advanced Signal Concepts

17-sample delay that is present when you run the model in multitasking
mode.

You have now successfully used the Upsample block’s reference page to
predict the tasking latency of a model.

2-64

Filters

The Signal Processing Blockset Filtering library provides an extensive array
of filtering blocks for designing and implementing filters in your models.

“Digital Filter Block” on page 3-2

“Digital Filter Design Block” on page 3-17
“Filter Realization Wizard” on page 3-31
“Analog Filter Design Block” on page 3-51
“Adaptive Filters” on page 3-53
“Multirate Filters” on page 3-66

3 Filters

Digital Filter Block

3-2

In this section...

“Overview of the Digital Filter Block” on page 3-2

“Implementing a Lowpass Filter” on page 3-3

“Implementing a Highpass Filter” on page 3-4

“Filtering High-Frequency Noise” on page 3-5

“Specifying Static Filters” on page 3-9

“Specifying Time-Varying Filters” on page 3-10

“Specifying the SOS Matrix (Biquadratic Filter Coefficients)” on page 3-15

Overview of the Digital Filter Block

You can use the Digital Filter block to implement digital FIR and IIR filters
in your models. Use this block if you have already performed the design and
analysis and know your desired filter coefficients. You can use this block to
filter single-channel and multichannel signals, and to simulate floating-point
and fixed-point filters. Then, you can use “Real-Time Workshop” to generate
highly optimized C code from your filter block.

To implement a filter with the Digital Filter block, you must provide the
following basic information about the filter:

e Whether the filter transfer function is FIR with all zeros, IIR with all poles,
or ITR with poles and zeros
® The desired filter structure

e The filter coefficients

Note Use the Digital Filter Design block to design and implement a filter.
Use the Digital Filter block to implement a predesigned filter. Both blocks
implement a filter in the same manner and have the same behavior during
simulation and code generation.

Digital Filter Block

Implementing a Lowpass Filter

You can use the Digital Filter block to implement a digital FIR or IIR filter.
In this topic, you use it to implement an FIR lowpass filter:

1 Define the lowpass filter coefficients in the MATLAB workspace by typing

lopassNum = [-0.0021 -0.0108 -0.0274 -0.0409 -0.0266 0.0374
0.1435 0.2465 0.2896 0.2465 0.1435 0.0374 -0.0266 -0.0409
-0.0274 -0.0108 -0.002117;

2 Open Simulink and create a new model file.

3 From the Signal Processing Blockset Filtering library, and then from the
Filter Implementations library, click-and-drag a Digital Filter block into
your model.

4 Double-click the Digital Filter block. Set the block parameters as follows,
and then click OK:

¢ Coefficient source = Dialog parameters

Transfer function type = FIR (all zeros)

Filter structure = Direct form transposed

¢ Numerator coefficients = lopassNum

Initial conditions = 0

Note that you can provide the filter coefficients in several ways:

¢ Type in a variable name from the MATLAB workspace, such as
lopassNum.

e Type in filter design commands from Signal Processing
Toolbox™ software or Filter Design Toolbox™ software, such as
fir1(5, 0.2, 'low').

® Type in a vector of the filter coefficient values.

5 Rename your block Digital Filter - Lowpass.

The Digital Filter block in your model now represents a lowpass filter. In the
next topic, “Implementing a Highpass Filter” on page 3-4, you use a Digital
Filter block to implement a highpass filter. For more information about the

3 Filters

Digital Filter block, see the Digital Filter block reference page. For more
information about designing and implementing a new filter, see “Digital Filter
Design Block” on page 3-17.

Implementing a Highpass Filter

In this topic, you implement an FIR highpass filter using the Digital Filter
block:

1 If the model you created in “Implementing a Lowpass Filter” on page 3-3 is
not open on your desktop, you can open an equivalent model by typing

doc_filter_ex1

at the MATLAB command prompt.
2 Define the highpass filter coefficients in the MATLAB workspace by typing

hipassNum = [-0.0051 0.0181 -0.0069 -0.0283 -0.0061
0.0549 0.0579 -0.0826 -0.2992 0.5946 -0.2992 -0.0826 ...
0.0579 0.0549 -0.0061 -0.0283 -0.0069 0.0181 -0.0051];

3 From the Signal Processing Blockset Filtering library, and then from the
Filter Implementations library, click-and-drag a Digital Filter block into
your model.

4 Double-click the Digital Filter block. Set the block parameters as follows,
and then click OK:

¢ Coefficient source = Dialog parameters

Transfer function type = FIR (all zeros)

Filter structure = Direct form transposed

¢ Numerator coefficients = hipassNum

Initial conditions = 0

You can provide the filter coefficients in several ways:

® Type in a variable name from the MATLAB workspace, such as
hipassNum.

Digital Filter Block

® Type in filter design commands from Signal Processing Toolbox software
or Filter Design Toolbox software, such as fir1(5, 0.2, 'low').

® Type in a vector of the filter coefficient values.
5 Rename your block Digital Filter - Highpass.

You have now successfully implemented a highpass filter. In the next topic,
“Filtering High-Frequency Noise” on page 3-5, you use these Digital Filter
blocks to create a model capable of removing high frequency noise from a
signal. For more information about designing and implementing a new filter,
see “Digital Filter Design Block” on page 3-17.

Filtering High-Frequency Noise

In the previous topics, you used Digital Filter blocks to implement FIR
lowpass and highpass filters. In this topic, you use these blocks to build a
model that removes high frequency noise from a signal. In this model, you
use the highpass filter, which is excited using a uniform random signal, to
create high-frequency noise. After you add this noise to a sine wave, you use
the lowpass filter to filter out the high-frequency noise:

1 If the model you created in “Implementing a Highpass Filter” on page 3-4 is
not open on your desktop, you can open an equivalent model by typing

doc_filter_ex2

at the MATLAB command prompt.

2 If you have not already done so, define the lowpass and highpass filter
coefficients in the MATLAB workspace by typing

lopassNum = [-0.0021 -0.0108 -0.0274 -0.0409 -0.0266 ...
0.0374 0.1435 0.2465 0.2896 0.2465 0.1435 0.0374 ...
-0.0266 -0.0409 -0.0274 -0.0108 -0.0021];

hipassNum = [-0.0051 0.0181 -0.0069 -0.0283 -0.0061
0.0549 0.0579 -0.0826 -0.2992 0.5946 -0.2992 -0.0826 ...
0.0579 0.0549 -0.0061 -0.0283 -0.0069 0.0181 -0.0051];

3 Click-and-drag the following blocks into your model file.

3-5

3 Filters

Block Library Quantity
Add Simulink / Math Operations 1
library
Random Source Signal Processing Sources 1
Sine Wave Signal Processing Sources 1
Time Scope Signal Processing Sinks 1

4 Set the parameters for the rest of the blocks as indicated in the following
table. For any parameters not listed in the table, leave them at their

default settings.

Block

Parameter Setting

Add

Icon shape = rectangular

List of signs = ++

Random Source

Source type = Uniform
Minimum =0

Maximum = 4

Sample mode = Discrete
Sample time = 1/1000

Samples per frame = 50

Sine Wave

Frequency (Hz) = 75
Sample time = 1/1000

Samples per frame = 50

Time Scope

File > Number of Input Ports > 3
File > Configuration ...

= Open the Visuals:Time Domain Options
dialog and set Time range = Input sample
time

Digital Filter Block

5 Connect the blocks as shown in the following figure. You need to resize
some of your blocks to accomplish this task.

E! doc_filter_exz ;Iglil

File Edit %iew Simulation Format Tools Help

DeE& & 28| &= ¢ (=22 =fi0 [Noma ~l| EHEH e
M » Dljgital o+
ilter

Random Lrigital Filter- Highpass L
Source Digit.al

™ Filter

— Time
||J_'-|DSP Digital Filter - Lowp ass Time
| I'|_|'| -+ Scope
Sine Wiawe
Add
Ready [100% | | [nde45 v

6 From the Simulation menu, select Configuration Parameters.
The Configuration Parameters dialog box opens.

7 In the Solver pane, set the parameters as follows, and then click OK:
e Start time =0
® Stop time =5
* Type = Fixed-step

e Solver =discrete (no continuous states)

8 In the model window, from the Simulation menu, choose Start.

3-7

3 Filters

The model simulation begins and the Scope displays the three input signals.

9 After simulation is complete, select View > Legend from the Time
Scope menu. The legend appears in the Time Scope window. You can
click-and-drag it anywhere on the scope display. To change the channel
names, double-click inside the legend and replace the current numbered
channel names with the following:

® Channel 1 = Noisy Sine Wave
® Channel 2 =Filtered Noisy Sine Wave

® Channel 3 =0riginal Sine Wave

In the next step, you will set the color, style, and marker of each channel.

10 In the Time Scope window, select View > Line Properties, and set the

following:
Line Style Marker Color
Noisy Sine Wave | - None Black
Filtered Noisy - diamond Red
Sine Wave
Original Sine None @ Blue
Wave

11 The Time Scope display should now appear as follows:

You can see that the lowpass filter filters out the high-frequency noise in
the noisy sine wave.

Digital Filter Block

=

File Tools Wwiew Playback Help

'\- L] o

CI S [

= o
m O h

Amplitude

Moisy Sine Wave
—&— Filtered Moisy Sine Wave
* Qriginal Sine Wave

Titme offzet: S000 (m=)

Ready

Time (ms)

T=5.000

You have now used Digital Filter blocks to build a model that removes high
frequency noise from a signal. For more information about designing and
implementing a new filter, see “Digital Filter Design Block” on page 3-17.

Specifying Static Filters
You can use the Digital Filter block to specify a static filter by setting the
Coefficient source parameter to Specify via dialog. Depending on the

3 Filters

3-10

filter structure, you need to enter your filter coefficients into one or more of
the following parameters. The block disables all the irrelevant parameters.
To see which of these parameters correspond to each filter structure, see
“Supported Filter Structures” in Signal Processing Blockset Reference:

* Numerator coefficients — Column or row vector of numerator
coefficients, [b0O, b1, b2, ..., bn].

® Denominator coefficients — Column or row vector of denominator
coefficients, [a0, a1, a2, ..., am].

e Reflection coefficients — Column or row vector of reflection coefficients,
[k1, k2, ..., kn].

® SOS matrix (Mx6) — M-by-6 SOS matrix. You can also use the Biquad
Filter block to create a static biquadratic IIR filter.

e Scale values — Scalar or vector of M+1 scale values to be used between
SOS stages.

Tuning the Filter Coefficient Values During Simulation

To change the static filter coefficients during simulation, double-click the
block, type in the new vector(s) of filter coefficients, and click OK. You cannot
change the filter order, so you cannot change the number of elements in the
vector(s) of filter coefficients.

Specifying Time-Varying Filters

Note This block does not support time-varying Biquadratic (SOS) filters.

Time-varying filters are filters whose coefficients change with time. You
can specify a time-varying filter that changes once per frame or once per
sample and you can filter multiple channels with each filter. However, you
cannot apply different filters to each channel; all channels must be filtered
with the same filter.

To specify a time-varying filter:

Digital Filter Block

1 Set the Coefficient source parameter to Input port(s), which enables
extra block input ports for the time-varying filter coefficients.

2 Set the Coefficient update rate parameter to One filter per frame
or One filter per sample depending on how often you want to update
the filter coefficients. To learn more, see “Setting the Coefficient Update
Rate” on page 3-11.

3 Provide vectors of numerator, denominator, or reflection coefficients to the
block input ports for filter coefficients. The series of vectors must arrive at
their ports at a specific rate, and must be of certain lengths. To learn more,
see “Providing Filter Coefficient Vectors at Block Input Ports” on page 3-12.

4 Select or clear the First denominator coefficient = 1, remove a0 term
in the structure parameter depending on whether your first denominator
coefficient is always 1. To learn more, see “Removing the a0 Term in the
Filter Structure” on page 3-14.

Setting the Coefficient Update Rate

When the input is frame based, the block updates time-varying filters once
every input frame, or once for every sample in an input frame, depending on
the Coefficient update rate parameter:

® One filter per frame — Each coefficient vector represents one filter that
is applied to all samples in the current frame.

® One filter per sample — Each coefficient vector represents a
concatenation of filter coefficients. When you have N samples per frame
and M coefficients for each filter, then the coefficient vector length is M*N.
All the coefficient vectors must be of equal length.

3-11

3 Filters

The following figure shows the block filtering one channel; however, the block
can filter multiple channels. Note that the block can apply a single filter to
multiple channels, but cannot apply a different filter to each channel.

Update filter coefficients once per frame:
At time 11, the block opplies the filter [1 11to oll three som ples in the first frome of input data.

Attime 12, the block updutes the filter fo (2 21 ond opplies i to the second frome of doto, ond so on.

Frome-Bosed Input Signal 13 2 fime = 1]
1 thonnel 7 4 1
(1 thonnel) 3) : —
3 ?i Dut
Filter Coefficients Updoted 4 & 3 M utp

Once Per Frome [

3 3]

2] [+]

“~One filter, opplied tothe current input frome

Update filter coetficients once per sample:
Attime t1, the block applies filter [1 11tothe first sample inthe first frame of datu, filter [2 21to the second sumple, ond filter

[3 31 to the third somple. At time t2, the block updotes the filter for ench somple in the next input frome, ond applies each filter
to the corresponding somple, ond so on. The block preserves stote from somple to somple.

Frome-Bosed Input Signal 3 1 fime = 1]
(1 chonnel) 7 4 ! FIR
B 3 2 In
- Out
Filter Coefficients Updoted 3 & 3 Num i
Once Per Somple
[7755099] [145566] [112237

Three filters of [ength two [one filter for Filters the first sume_F‘ilTers the Filters the

ench sample inthe current input frame) in the current input second sample third somple

Providing Filter Coefficient Vectors at Block Input Ports

As illustrated in the previous figure, the filter coefficient vectors for filters
that update once per frame are different from coefficient vectors for filters
that update once per sample. See the following tables to meet the rate and
length requirements of the filter coefficient vectors:

3-12

Digital Filter Block

¢ Length requirements — See the table Length Requirements for

Time-Varying Filter Coefficient Vectors on page 3-13.

® Rate requirements — See the table Rate Requirements for Time-Varying

Filter Coefficient Vectors on page 3-14.

The output size, frame status, and dimension always match those of the input

signal that is filtered, not the vector of filter coefficients.

Length Requirements for Time-Varying Filter Coefficient Vectors

Coefficient
Update How to Specify Filter Coefficient Vectors Length
Rate (Also see the previous figure) Requirements
Once per Each coefficient vector corresponds to one input frame and None
frame represents one filter. Specify each vector as you would
any static filter: [b,, b,, b,, ..., b,], [a,, a,, a,, ..., a,], or
[k}, Ry ..y R
Once per Each coefficient vector corresponds to one input frame. All filters must be
sample However, the vector represents multiple filters of the same the same length,

length with one filter for each sample in the current frame.
To create such a vector, concatenate all the filters for each
sample within the input frame. For instance, the following
vector specifies length-2 numerator coefficients for each
sample in a three-sample frame

[0 b1 By By Bo P1]

where [by b;] filters the first sample in the input

frame, [B, By] filters the second sample, and so on.

L.

The length of each
filter coefficient
vector must be L
times the number
of samples per
frame in the input.
(Each sample in
the frame has
one set of filter
coefficients.)

The time-varying filter coefficient vectors can be sample- or frame-based row
or column vectors. The vectors of filter coefficients must arrive at their input

port at the same times that the frames of input data arrive at their input port,

as indicated in the following table.

3-13

3 Filters

Rate Requirements for Time-Varying Filter Coefficient Vectors

Input Time-Varying Filter Rate Requirements (Also see the previous
Signal Coefficient Vectors figure)

Sample Sample based Sample rates of input and filter coefficients
based must be equal.

Sample Frame based Input sample rate must equal filter coefficient
based frame rate.

Frame Sample based Input frame rate must equal filter coefficient
based sample rate.

Frame Frame based Frame rates of input and filter coefficients must
based be equal.

Removing the a0 Term in the Filter Structure

When you know that the first denominator filter coefficient (a,) is always 1
for your time-varying filter, select the First denominator coefficient = 1,
remove a0 term in the structure parameter. Selecting this parameter
reduces the number of computations the block must make to produce the
output (the block omits the 1/ a, term in the filter structure, as illustrated
in the following figure). The block output is invalid if you select this
parameter when the first denominator filter coefficient is not always 1 for
your time-varying filter. Note that the block ignores the First denominator
coefficient = 1, remove a0 term in the structure parameter for
fixed-point inputs, since this block does not support nonunity a, coefficients
for fixed-point inputs.

3-14

Digital Filter Block

The block omits this term in the structure when you set the
First denominator coefficient = 1, remove a0 term in the structure poromefer.

];"r[ln hﬂ

¥
[
g

»
o

MO

¢
¥
PI

M|

Specifying the SOS Matrix (Biquadratic Filter
Coefficients)

The Digital Filter block does not support time-varying biquadratic filters. To
specify a static biquadratic filter (also known as a second-order section or SOS

filter) using the Digital Filter Block, you need to set the following parameters
as indicated:

¢ Transfer function type — IIR (poles & zeros)

¢ Filter structure — Biquad direct form I (SO0S), or Biquad direct
form I transposed (SOS), or, or Biquad direct form II transposed
(S0S)

¢ SOS matrix (Mx6) M-by-6 SOS matrix

The SOS matrix is an M-by-6 matrix, where M is the number of sections in
the second-order section filter. Each row of the SOS matrix contains the
numerator and denominator coefficients (b,, and a;,) of the corresponding
section in the filter.

3-15

3 Filters

3-16

e Scale values Scalar or vector of M+1 scale values to be used between
SOS stages

If you enter a scalar, the value is used as the gain value before the first
section of the second-order filter. The rest of the gain values are set to 1.

If you enter a vector of M+1 values, each value is used for a separate
section of the filter. For example, the first element is the first gain value,
the second element is the second gain value, and so on.

output
Seale value 1 Scale value 2 Scale value h+1
Section 1 Section b

You can use the ss2sos and tf2sos functions from Signal Processing Toolbox
software to convert a state-space or transfer function description of your filter
into the second-order section description used by this block.

bor b1 by apr a1 ag
boo bz bog ape ajp ag

bom bim bem @M aim agm

The block normalizes each row by a,, to ensure a value of 1 for the zero-delay
denominator coefficients.

Note You can also use the Biquad Filter block to implement a static
biquadratic IIR filter.

Digital Filter Design Block

Digital Filter Design Block

In this section...

“Overview of the Digital Filter Design Block” on page 3-17
“Choosing Between Filter Design Blocks” on page 3-18
“Creating a Lowpass Filter” on page 3-21

“Creating a Highpass Filter” on page 3-23

“Filtering High-Frequency Noise” on page 3-25

Overview of the Digital Filter Design Block

You can use the Digital Filter Design block to design and implement a digital
filter. The filter you design can filter single-channel or multichannel signals.
The Digital Filter Design block is ideal for simulating the numerical behavior
of your filter on a floating-point system, such as a personal computer or DSP
chip. You can use “Real-Time Workshop” to generate C code from your filter
block. For more information on generating C code from models, see “Code
Generation” in the Signal Processing Blockset Getting Started Guide.

Alternatively, you can use other MathWorks™ products, such as Signal
Processing Toolbox software and Filter Design Toolbox software, to design
your filters. Once you design a filter using either toolbox, you can use one of
the filter implementation blocks from Signal Processing Blockset software,
such as the Digital Filter block, to realize the filters in your models. For more
information, see the Signal Processing Toolbox documentation and Filter
Design Toolbox documentation. To learn how to import and export your filter
designs, see “Importing and Exporting Quantized Filters” in the Filter Design
Toolbox documentation.

Filter Design and Analysis

You perform all filter design and analysis within the Filter Design and
Analysis Tool (FDATool) GUI, which opens when you double-click the Digital
Filter Design block. FDATool provides extensive filter design parameters and
analysis tools such as pole-zero and impulse response plots.

3-17

3 Filters

3-18

Filter Implementation

Once you have designed your filter using FDATool, the block automatically
realizes the filter using the filter structure you specified. You can then use
the block to filter signals in your model. You can also fine-tune the filter by
changing the filter specification parameters during a simulation. The outputs
of the Digital Filter Design block numerically match the outputs of the Filter
Design Toolbox filter function and the MATLAB filter function.

Saving, Exporting, and Importing Filters

The Digital Filter Design block allows you to save the filters you design,
export filters (to the MATLAB workspace, MAT-files, etc.), and import filters
designed elsewhere.

To learn how to save your filter designs, see “Saving and Opening Filter
Design Sessions” in the Signal Processing Toolbox documentation. To learn
how to import and export your filter designs, see “Importing and Exporting
Quantized Filters” in the Filter Design Toolbox documentation.

Note Use the Digital Filter Design block to design and implement a filter.
Use the Digital Filter block to implement a predesigned filter. Both blocks
implement a filter design in the same manner and have the same behavior
during simulation and code generation.

See the Digital Filter Design block reference page for more information.
For information on choosing between the Digital Filter Design block and
the Filter Realization Wizard, see “Choosing Between Filter Design Blocks”
on page 3-18.

Choosing Between Filter Design Blocks

You can design and implement digital filters using the Digital Filter Design
block and Filter Realization Wizard. This topic explains the similarities and
differences between these blocks. In addition, you learn how to choose the
block that is best suited for your needs.

Digital Filter Design Block

Similarities
The Digital Filter Design block and Filter Realization Wizard are similar
in the following ways:

¢ Filter design and analysis options — Both blocks use the Filter Design and
Analysis Tool (FDATool) GUI for filter design and analysis.

¢ Qutput values — If the output of both blocks is double-precision floating
point, single-precision floating point, or fixed point, the output values of
both blocks numerically match the output of the filter method of the
dfilt object.

Differences

The Digital Filter Design block and Filter Realization Wizard handle the
following things differently:

¢ Filter implementation method

= The Digital Filter Design block opens the FDATool GUI to the Design
Filter panel. It implements filters using the Digital Filter block. These
filters are optimized for both speed and memory use in simulation and in
C code generation. For more information on code generation, see “Code
Generation” in the Signal Processing Blockset Getting Started Guide.

= The Filter Realization Wizard opens the FDATool GUI to the Realize
Model panel. The block can implement filters in two different ways. It
can use the Simulink Sum, Gain, and Delay blocks, or it can use the
Digital Filter block. If you choose to implement your filter using the
Digital Filter block, your filter is bound by the type of filters this block
supports.

Note If your filter is implemented by the Filter Realization Wizard using
Sum, Gain, and Delay blocks, inputs to the filter must be sample based.

e Supported filter structures — Both blocks support many of the same
basic filter structures, but the Filter Realization Wizard supports more
structures than the Digital Filter Design block. This is because the block
can implement filters using Sum, Gain, and Delay blocks. See the Filter

3-19

3 Filters

Realization Wizard and Digital Filter Design block reference pages for a
list of all the structures they support.

® Multichannel filtering — The Digital Filter Design block can filter
multichannel signals. Filters implemented by the Filter Realization Wizard
can only filter single-channel signals.

¢ Data type support — The Digital Filter block supports single- and
double-precision floating-point computation for all filter structures and
fixed-point computation for some filter structures. The Digital Filter Design
block only supports single- and double-precision floating-point computation.

When to Use Each Block

The following are specific situations where only the Digital Filter Design
block or the Filter Realization Wizard is appropriate.
¢ Digital Filter Design

= Use to simulate single- and double-precision floating-point filters.

= Use to filter multichannel signals.

= Use to generate highly optimized ANSI® C code that implements
floating-point filters for embedded systems. For more information on
code generation, see “Code Generation” in the Signal Processing Blockset
Getting Started Guide.

e Filter Realization Wizard

= Use to simulate numerical behavior of fixed-point filters in a DSP chip,
a field-programmable gate array (FPGA), or an application-specific
integrated circuit (ASIC).

= Use to simulate single- and double-precision floating-point filters with
structures that the Digital Filter Design block does not support.

= Use to visualize the filter structure, as the block can build the filter
from Sum, Gain, and Delay blocks.

= Use to generate multiple filter blocks rapidly.

See “Filter Realization Wizard” on page 3-31 and the Filter Realization
Wizard block reference page for information.

3-20

Digital Filter Design Block

Creating a Lowpass Filter

You can use the Digital Filter Design block to design and implement a digital
FIR or IIR filter. In this topic, you use it to create an FIR lowpass filter:

1 Open Simulink and create a new model file.

2 From the Signal Processing Blockset Filtering library, and then from the
Filter Implementations library, click-and-drag a Digital Filter Design block
into your model.

3 Double-click the Digital Filter Design block.

The Filter Design and Analysis Tool (FDATool) GUI opens.
4 Set the parameters as follows, and then click OK:

* Response Type = Lowpass

¢ Design Method = FIR, Equiripple

¢ Filter Order = Minimum order

® Units = Normalized (0 to 1)

® wpass =0.2

* wstop =0.5

3-21

3 Filters

When you are finished, the GUI should look similar to the following figure:

<} Block Parameters: Digital Filter Design

Filz Edit

Analysis Targets

Wiew Window Help

=131 x|

DS - > | 220X 1AM # < [0 Bk ORE

r?

(o ILowpass

[]
. |Highpass j
" Bandpass

{~ Bandstop

o |Differer‘|tiatu:ur
| Design hethod

]

{" Specify order: |1 i

% Miniraum order

Fs:

__Dptions

WHASS

Density Factor: |1 -]

s stop:

Inits: INormaIized (Oto... vI

— Currert Fiter — Magnitude Responze
4 : : : : : : : : :
0 - e Fem-- R peme——- f-———- R | .
Structure: Direct-Form FIR: o i i ; i i , | , |
Ly H i H H H i H i
Orler: 16 o . ! . | . i | i |
T 50f----- [P . . . R —————- P [R
Sections: 1 2 - : ! : ! : : ! : !
Stable: Yes & : : : : : i : i
= ' I ' I I ' I
Source: Designed 100 f----- PR [EEEEE R EEEEEEEE Bh bl teeb EEEEE & eo--lf EEREEES
150 H H H H H H H H H
u] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.5 0.4
Mormalized Frequency (= radizample)
_Response Type _Fitter Order Frequency - Magnitude -

I48I:IDEI
ID 2
ID 5

Units: Id - I

ApEsE |1
Astop: IBIZI

;!5 IR IEuﬂerwnr‘ch "I
e,
* FIR IEquirippIe vI
':snEl
I‘!&LAE Design Fiter |
IReadv

3-22

5 Click Design Filter at the bottom of the GUI to design the filter.

Your Digital Filter Design block now represents a filter with the
parameters you specified.

Digital Filter Design Block

6 From the Edit menu, select Convert Structure.
The Convert Structure dialog box opens.
7 Select Direct-Form FIR Transposed and click OK.

8 Rename your block Digital Filter Design - Lowpass.

The Digital Filter Design block now represents a lowpass filter with a
Direct-Form FIR Transposed structure. The filter passes all frequencies up
to 20% of the Nyquist frequency (half the sampling frequency), and stops
frequencies greater than or equal to 50% of the Nyquist frequency as defined
by the wpass and wstop parameters. In the next topic, “Creating a Highpass
Filter” on page 3-23, you use a Digital Filter Design block to create a highpass
filter. For more information about implementing a predesigned filter, see
“Digital Filter Block” on page 3-2.

Creating a Highpass Filter

In this topic, you create a highpass filter using the Digital Filter Design block:

1 If the model you created in “Creating a Lowpass Filter” on page 3-21 is not
open on your desktop, you can open an equivalent model by typing

doc_filter_ex4

at the MATLAB command prompt.

2 From the Signal Processing Blockset Filtering library, and then from the
Filter Implementations library, click-and-drag a second Digital Filter
Design block into your model.

3 Double-click the Digital Filter Design block.

The Filter Design and Analysis Tool (FDATool) GUI opens.
4 Set the parameters as follows:

* Response Type = Highpass

¢ Design Method = FIR, Equiripple

¢ Filter Order = Minimum order

3-23

3 Filters

3-24

e Units = Normalized (0 to 1)

® wstop =0.2

®* wpass =0.5

When you are finished, the GUI should look similar to the following figure.

<} Block Parameters: Digital Filter Design

=10] x|

File Edit Analysis Targets Yiew ‘Window Help
DeEESRl< >~ 222X TR :: 00 BhORIE| 4K
— Current Fitter Infortnation —Maghitude Response (dB)
EC : : : : : : : : :
i} . —— - L - [[[[[
Structure: Direct-Forin FIR o i i X i i i | i i
1) | h | | h | h h
Order: 16 o : : : : : : : : :
Sections: 1 RS b e o e Foes oo R P R pooees
[= i H i H 1 H i H H
Stable: Yes & ' ' ' ! ! : : :
Source: Designed 00 - Fo--oo- Fo-o-- Fo--oo- Fo-o-- [B Bkl (RRbh o LR LEEEE & Fo--o- —
S I T T AR SN N NS NN
i} a1 oz 03 04 05 0.& o7 ns 049
Mormalized Fregquency (xn radisample)
__Response Type __Fitter Crder _Freguency Specifications — Magnitude Specifications

AR

%ﬁ

. |anpass d
oy IHighpass j
" Bandpass
" Bandstop

o |Differentiatnr
Design Method

IR IEuﬂerWu:urth 'I
+ FIR IEquirippIe vI

i~ Specify order: |1D

* Mlinimurn order

Unit=: INormaIized 0to1) - I

— Optiohs

Density Factor: |1 5]

Fs=: |4SUDD
swstop: II:I.2
WYREES: IE

Lnits: |dEl j
Astop: IBD
Apass: I‘I

Cesigh Fiter |

7| &5

Digital Filter Design Block

5 Click the Design Filter button at the bottom of the GUI to design the filter.

Your Digital Filter Design block now represents a filter with the
parameters you specified.

6 In the Edit menu, select Convert Structure.
The Convert Structure dialog box opens.
7 Select Direct-Form FIR Transposed and click OK.

8 Rename your block Digital Filter Design - Highpass.

The block now implements a highpass filter with a direct form FIR transpose
structure. The filter passes all frequencies greater than or equal to 50% of the
Nyquist frequency (half the sampling frequency), and stops frequencies less
than or equal to 20% of the Nyquist frequency as defined by the wpass and
wstop parameters. This highpass filter is the opposite of the lowpass filter
described in “Creating a Lowpass Filter” on page 3-21. The highpass filter
passes the frequencies stopped by the lowpass filter, and stops the frequencies
passed by the lowpass filter. In the next topic, “Filtering High-Frequency
Noise” on page 3-25, you use these Digital Filter Design blocks to create a
model capable of removing high frequency noise from a signal. For more
information about implementing a predesigned filter, see “Digital Filter
Block” on page 3-2.

Filtering High-Frequency Noise

In the previous topics, you used Digital Filter Design blocks to create FIR
lowpass and highpass filters. In this topic, you use these blocks to build a
model that removes high frequency noise from a signal. In this model, you
use the highpass filter, which is excited using a uniform random signal, to
create high-frequency noise. After you add this noise to a sine wave, you use
the lowpass filter to filter out the high-frequency noise:

1 If the model you created in “Creating a Highpass Filter” on page 3-23 is not
open on your desktop, you can open an equivalent model by typing

doc_filter_ex5

at the MATLAB command prompt.

3-25

3 Filters

2 Click-and-drag the following blocks into your model.

Block Library Quantity
Add Simulink Math Operations 1
library
Random Source Signal Processing Sources 1
Sine Wave Signal Processing Sources 1
Time Scope Signal Processing Sinks 1

3 Set the parameters for these blocks as indicated in the following table.
Leave the parameters not listed in the table at their default settings.

Parameter Settings for the Other Blocks

Block

Parameter Setting

Add

Icon shape = rectangular

List of signs = ++

Random
Source

Source type = = Uniform
Minimum =0

Maximum = 4

Sample mode = Discrete
Sample time = 1/1000

Samples per frame = 50

Sine Wave

Frequency (Hz) = 75
Sample time = 1/1000

Samples per frame = 50

Time Scope

File > Number of Input Ports > 3
File > Configuration ...

- Open the Visuals:Time Domain Options dialog
and set Time range = Input sample time

3-26

Digital Filter Design Block

4 Connect the blocks as shown in the following figure. You might need to
resize some of the blocks to accomplish this task.

E! doc_filter_ex5

_ o] x|
File Edit Wiew Simulation Format Tools Help
D|E—”E§|£E|<}==bﬁ}|ﬂfl FII1D INnrmaI j|@|ﬂ|
FOATool
el —» 7 -
Random
Source Digital FLAaTaal L
Filter Design - Highpass
.— m
—p Time
Crigital Time
||J_L|DSP Filter Dresign - Lowpass Scope
| A "
Sine Wave
Add
Ready [100% | | |odz45 5

5 From the Simulation menu, select Configuration Parameters.

The Configuration Parameters dialog box opens.

6 In the Solver pane, set the parameters as follows, and then click OK:
e Start time =0
® Stop time =5

* Type = Fixed-step

3-27

3 Filters

3-28

e Solver =Discrete (no continuous states)
7 In the model window, from the Simulation menu, choose Start.
The model simulation begins and the scope displays the three input signals.

8 After simulation is complete, select View > Legend from the Time
Scope menu. The legend appears in the Time Scope window. You can
click-and-drag it anywhere on the scope display. To change the channel
names, double-click inside the legend and replace the current numbered
channel names with the following:

e Channel 1 = Noisy Sine Wave
® Channel 2 =Filtered Noisy Sine Wave

¢ Channel 3 =0riginal Sine Wave
In the next step, you will set the color, style, and marker of each channel.

9 In the Time Scope window, select View > Line Properties, and set the
following:

Line Style Marker Color
Noisy Sine Wave | - None Black
Filtered Noisy - diamond Red
Sine Wave

Original Sine None & Blue
Wave

10 The Time Scope display should now appear as follows:

Digital Filter Design Block

=191 x]

File Tools Wwiew Playback Help
+"‘\- X_\. \r:'\- |
I [Jacs

Arnplitude

Moisy Sine Wave

2 5| —5— Filtered Moisy Sine Wave |.L

4 Original 3ine YWave
a] 10 14 20 25

Time offset: 5000 (ms) Titme (me)

Ready T=5.000

| N

]

You can see that the lowpass filter filters out the high-frequency noise in
the noisy sine wave.

You have now used Digital Filter Design blocks to build a model that removes
high frequency noise from a signal. For more information about these blocks,
see the Digital Filter Design block reference page. For information on another
block capable of designing and implementing filters, see “Filter Realization
Wizard” on page 3-31. To learn how to save your filter designs, see “Saving
and Opening Filter Design Sessions” in the Signal Processing Toolbox

3-29

3 Filters

documentation. To learn how to import and export your filter designs, see
“Importing and Exporting Quantized Filters” in the Filter Design Toolbox
documentation.

3-30

Filter Realization Wizard

Filter Realization Wizard

In this section...

“Overview of the Filter Realization Wizard” on page 3-31
“Designing and Implementing a Fixed-Point Filter” on page 3-32
“Setting the Filter Structure and Number of Filter Sections” on page 3-48

“Optimizing the Filter Structure” on page 3-49

Overview of the Filter Realization Wizard

The Filter Realization Wizard is another Signal Processing Blockset block
that can be used to design and implement digital filters. You can use this
tool to filter single-channel floating-point or fixed-point signals. Like the
Digital Filter Design block, double-clicking a Filter Realization Wizard block
opens FDATool. Unlike the Digital Filter Design block, the Filter Realization
Wizard starts FDATool with the Realize Model panel selected. This panel is
optimized for use with Signal Processing Blockset software.

For more information, see the Filter Realization Wizard block reference page.
For information on choosing between the Digital Filter Design block and

the Filter Realization Wizard, see “Choosing Between Filter Design Blocks”
on page 3-18.

Alternatively, you can use other MathWorks products, such as Signal
Processing Toolbox software and Filter Design Toolbox software, to design
your filters. Once you design a filter using either toolbox, you can use one of
the filter implementation blocks from Signal Processing Blockset software,
such as the Digital Filter block, to realize the filters in your models. For more
information, see the Signal Processing Toolbox documentation and Filter
Design Toolbox documentation. To learn how to import and export your filter
designs, see “Importing and Exporting Quantized Filters” in the Filter Design
Toolbox documentation.

3-31

3 Filters

Designing and Implementing a Fixed-Point Filter

In this section, a tutorial guides you through creating a fixed-point filter with
the Filter Realization Wizard. You will use the Filter Realization Wizard to
remove noise from a signal. This tutorial has the following parts:

e “Part 1 — Creating a Signal with Added Noise” on page 3-32

® “Part 2 — Creating a Fixed-Point Filter with the Filter Realization Wizard”
on page 3-34

e “Part 3 — Building a Model to Filter a Signal” on page 3-42
® “Part 4 — Looking at Filtering Results” on page 3-46

Part 1 — Creating a Signal with Added Noise

In this section of the tutorial, you will create a signal with added noise. Later
in the tutorial, you will filter this signal with a fixed-point filter that you
design with the Filter Realization Wizard.

1 Type

load mtlb
soundsc(mtlb,Fs)

at the MATLAB command line. You should hear a voice say “MATLAB.”
This is the signal to which you will add noise.

2 Create a noise signal by typing
noise = cos(2*pi*3*Fs/8*(0:1length(mtlb)-1)/Fs)’;
at the command line. You can hear the noise signal by typing
soundsc(noise,Fs)
3 Add the noise to the original signal by typing
u = mtlb + noise;
at the command line.

4 Scale the signal with noise by typing

3-32

Filter Realization Wizard

u = u/max(abs(u));

at the command line. You scale the signal to try to avoid overflows later on.

You can hear the scaled signal with noise by typing

soundsc(u,Fs)

5 View the scaled signal with noise by typing

spectrogram(u,256,[]1,[]1,Fs);colorbar

at the command line.

The spectrogram appears as follows.

File Edit View Insert Tools Desktop ‘Window Help

=10l x|

EEE| K RaOe €08 =0

05

0.45

0.4

035

0.3

o
Ry sl
iy

BT

a 500 1000 1500 2000 2500 3000 3500
Frequency (Hz)

Time

025

0.05

--70

--80

-850

-100

-110

3-33

‘ 3 Filters

In the spectrogram, you can see the noise signal as a line at about 2800 Hz,
which 1s equal to 3*Fs/8.

Part 2 — Creating a Fixed-Point Filter with the Filter Realization
Wizard

Next you will create a fixed-point filter using the Filter Realization Wizard.
You will create a filter that reduces the effects of the noise on the signal.

6 Open a new Simulink model, and drag-and-drop a Filter Realization Wizard
block from the Filtering / Filter Implementations library into the model.

E!fiuedpnint_filter
File Edit Wiew Simulation Format Tools Help

D|ﬁﬂ§|é€ﬁ|9@|b IINormaI "”@Eﬂﬁﬁ@

FDATooI_,l,_

L1

Ty

Filter
Realization
Wizard

Ready 100% [ode4s 4

Note You do not have to place a Filter Realization Wizard block in a model
in order to use it. You can open the GUI from within a library. However,
for purposes of this tutorial, we will keep the Filter Realization Wizard
block in the model.

3-34

Filter Realization Wizard

7 Double-click the Filter Realization Wizard block in your model. The
Realize Model panel of the Filter Design and Analysis Tool (FDATool)
appears.

) Filter Design & Analysis Tool - [fwizdef.mat] 10| x|
File Edit Analysis Targets Yiew Window Help
DedaESl 220X O MWN#+0 - BLIARE N
— Current Fiter Informstion—— — Magnitude Rezponze ()
Uy T
Structure: Direct-Form I, ;
Second-Order Section: {
o - ------------ A
B 1
Orler: 8 - i
) k=1 1
Sections: 4 2 A00f----cooooo- -
Stable: Yes % {
Source: Designed = |
450 ------------- -
Stare Filter .. | 0 5
Frequency (kHz)
Fitter Manager ... |
— Moclel — Optimization
= Elock name: Firter [~ | Optirmize, for Zero ceins
5
—
8w Detinstion: ICurrent :I' _ .
— [~ Optirize, for unty gains
%
[zer Defined: '_Inti‘tled
?@ [Optimize for negative gains
= [~ Crverwrite generated Fiter block
TRy
[l - _
[Build maodel using bazic elements [| Optimize clefay. chiains
&)
E‘ Realize Model |
|L0ading session file ... done.

3-35

3 Filters

3-36

8 Click the Design Filter button on the bottom left of FDATool. This brings
forward the Design Filter panel of the tool.

) Filter Design & Analysis Tool - [fwizdef.mat] =1olx]

File Edit Analysis Targets Yiew Window Help
PeEESR|(222X O ANM#: 2+ 0 rBLORH|W

— Magnitude Response (dB)

— ‘Surrent Fitter Infarmation

0]
Structure: Direct-Form I, ;
Second-Order Section: {
o - ------------ A
= 1
Oroer: g - '
Sections: 4 E BT) H
Stable: Yes % E
Source: Designed = |
150 [~ mm e -
Stare Filter .. | 0 5
Frequency (kHz)
Fitter Manager ... |
— Response Type__ FiterOrder— Freguency Specifications — Magnitude Specifications
' |Lowpass j {* Specity order: r Units: IHZ j'
=
= . IHighpaSS d .
i Minimum order Fa: FBDDD The attenuation at cutaft
 Bandpass

" Bandstop Options Fe: EDBDD T freguencies is fixed at 3 dB

o IDifferentiator d thalf the passhand povwer)
Desion Method Thete are no optional
— 4 parameters for thiz design

Lol 7 IBuﬁerworth 'I methad.
" FIR IEquirippIe 'I

e (e [|

2

Design Fiter |

9 Set the following fields in the Design Filter panel:
¢ Set Design Method to IIR -- Constrained Least Pth-norm
* Set Fsto Fs
e Set Fpass to 0.2*Fs
¢ Set Fstop to 0.25*Fs

Filter Realization Wizard

® Set Max pole radius to 0.8

¢ (Click the Design Filter button

The Design Filter panel should now appear as follows.

) Filter Design & Analysis Tool - [fwizdef.mat *] 10| x|
File Edit Analysis Targets Wiew Window Help
DedESR 220X 06N 2+ 0 Bk @R B2
— Currert Filter Informstion — Magnitude Response (dB)
0 ! :
Structure: Direct-Form Il J: J:
Second-Oroer Section: . © ['
& H |
L H |
Ordler: & O R jroeees 3
Sectionz: 4 E i 1
* e | T [P
Stable: Yes % Al J: J:
Source: Dezigned = H i
40 [-------- i i
ol o |
50 JI 4
Store Filter .. | 0 0.5 3 35
Frequency (kHz)
Fitter Manager ... |
_ResponzeType__ Filter Crder __Freguency Specifications — Magnitude Specifications
% |Lowpass - 2 E Units:
2 -~ I E J PEIRGE EREER ! Enter a weight walue for
A Highpazs A each hand below.
SIS I J Denarminator order: E Fs: FS
 Bandpass ipass h—
" Bandztop __ Options Fpaszs: E.Z*FS
- - Wyiztop: I:I
- e Ileferenhator d Density Factor: ED Ftop: W
i | Deszign Method
@ Pth Morm: ﬁ 28
e IR IConstr. LeastPt.. = I
Max Pole Radius: E.Ei
@ CFR IEquirippIe :I' Ware options . |

Design Fifter: |

|Designing Filter ... Done

3-37

3 Filters

10 Click the Set Quantization Parameters button on the bottom left of
FDATool. This brings forward the Set Quantization Parameters panel
of the tool.

) Filter Design & Analysis Tool - [fwizdef.mat *] 10| x|

File Edit Analysis Targets Wiew Window Help
DeHaR| 220X D HUM2 2+ 0 BLORE| N

— Currert Filter Information

_ Magnitude Response (dE)

Structure: Direct-Form Il
Second-Order Section:

o
=
Crler: g =
Sections: 4 E
Stable: Yes %
=

Source: Desigredd

Store Fitter ... |
| Frequency (kHz)

Fitter Manager ...

Filtter arithmetic: |Double-precizion flaating-point d

There are no additional settings for Double-precision floating-point arithmetic.

11 Set the following fields in the Set Quantization Parameters panel:
e Select Fixed-point for the Filter arithmetic parameter.

® Make sure the Best precision fraction lengths check box is selected
on the Coefficients pane.

3-38

Filter Realization Wizard

The Set Quantization Parameters panel should appear as follows.

) Filter Design & Analysis Tool - [fwizdef.mat *]

File Edit Analysis Targets Yiew Window Help

=10l x|

DEHESR| 2LEX T|H|NNM2 £+ 0 B

b @ R R

— Current Fiter Informstion—— — Magnitude Rezponze ()

Structure: Direct-Form I,
Secand-Order Section:

o
A=)
Oroer: g -
Sections: 4 E
Stahle: Yes %
=

Source: Designed (gquantized)

Store Fitter ... | =
Fitter hanager ... | Frequency (kHz)
Fitter arithmetic: [| Coefficients || Inputt A0 put || Fitter Internals
=
= Coefficient vword length; I‘IE— [¥ Best-precision fraction lengths [————
Mt

{* Mumerator frac. [Enoth ﬁ4 {* Scale Values frac, lenoth; I:IS

" humerator range [+ ﬁ | Scale Walles range (+1-; F]

&+ Denominator frac, lenoth: ﬁ 4

(]

() Denominatar Fange (+/-1; ﬁ

Afply |

Gl

|Quantizing Filter ... dane

3-39

3 Filters

12 Click the Realize Model button on the left side of FDATool. This brings
forward the Realize Model panel of the tool.

) Filter Design & Analysis Tool - [fwizdef.mat *] 10| x|
File Edit Analysis Targets Yiew Window Help
DedaESl 220X O MWNM#+0 - BLIARE N
— Current Fiter Informstion—— — Magnitude Rezponze ()
0 I T
Structure; Direct-Form I, J: i J:
Second-Order Section: . oL [[l
& ' ' |
u ' ' h
Orcler: & O I e t :
Sections: 4 E H H |
Stable: Yes = © [v H
Source: Designed (gquantized) = - J _________ 1 J
N o ' |
=0 i i]
Store Fitter .. | 0 t.5 15 2 15 3
Frequency (kHz)
Fitter Manager ... |
— Moclel — Optimization
Block name: Firter [| Optirmize, for e peins
Destination: ICurrent 'I
Esinaton [~ Optirize, for unty gains
[zer Defined: '_Inti‘tled
[Optirmize. for negsative gains
[~ Crverwrite generated Fiter block
[Build model using basic elements [~ Optimize delay chsins
Realize Model |

3-40

Filter Realization Wizard

13 Select the Build model using basic elements check box, then click the
Realize Model button on the bottom of FDATool. A block for the new
filter appears in your model.

E!fi:-cedpoint_ﬁlter
File Edit View Simulation Farmat Tools Help

D& ¢ 2| =i o - BB S|

FLAT ool
Bt

jd

Filter
Realization
Wizard

Input Cutput

Filter

Ready |100e% |odess v

Note You do not have to keep the Filter Realization Wizard block in the
same model as your Filter block. However, for this tutorial, we will keep
the blocks in the same model.

3-41

3 Filters

14 Double-click the Filter block in your model. This will bring up the
realization of the filter being represented by the block.

ﬁfiuedpuint filter/Filter

Eile Edit Eie Simulation Format Tools Help
D EEH&S &2R <52 sfio0 |ioml BB hEET ®

o = - o
] r
e

Ready [19%% [[|odeds v

I
-
1}
T
I
-
1}
T

L
-
=

L
-
=

Part 3 — Building a Model to Filter a Signal

In this section of the tutorial, you will build and run a model with the filter
you just designed, in order to filter the noise from your signal.

15 Connect a Signal From Workspace block from the Signal Processing
Sources library to the input port of your filter block.

3-42

Filter Realization Wizard

16 Connect a Signal To Workspace block from the Signal Processing Sinks

library to the output port of your filter block. Your model should now
appear as follows.

E!fiuedpnint_filter
File Edit Wiew Simulation Format Tools Help
Dlﬁﬂ@l%élﬂ@|} II1EI.EI INormaI j|@|ﬁ||a
FOATool 1~
TN
Filter
Realization
Nizard
1:10 B Input Output - ywout
Signal From Filter Signal Ta
‘Whatkspace Motk=pace
Ready [100% [odz4s v

3-43

3 Filters

17 Change the Signal parameter of the Signal From Workspace block to u by
double-clicking on the block.

E Source Block Parameters: Signal From Workspace il

— Signal From *orkzpace [mazk] [link)

Qutput zignal zamples obtained from the MATLAE workzpace at succeszzive sample
timesz. & zignal matnix iz interpreted az hiaving one channel per column. Signal
colurnz may be buffered into frames by zpecifying & number of zamples per frame
greater than 1. An b = M = P signal aray outputs M = N matrices at successive
zample timez. The zamples per frame must be equal to 1 far three-dimenzional zignal
Arays.

— Parameter
Signal:

fu
Sample time;
[
Samples per frame;

[

Form output after final data walue by: [Setting to zero ;I

] Cancel | Help

18 Click the OK button.

3-44

Filter Realization Wizard

19 Open the Configuration Parameters dialog box from the Simulation
menu of the model. In the Solver pane of the dialog, set the following fields:

* Stop time = length(u)-1
e Type = Fixed-step

The Configuration Parameters dialog box should now appear as follows.

/Configuration

Select: r— Simulation time

- Salver Start time: |E|_E| Stap time: |Iength[u] -1
- Data Import/...

- O ptirnization
[Diagrostics
- Sample T... Tope: I Fired-step ;I Salver I ode3 [Bogacki-Shanpine] ;I
- Data Inte... . X .

. Carrversion Periodic sample ime constraint: I Unconstrained ;I
- Connect...

- Compatibi...
-~ Model Re... Tazking mode for periodic sample times: I Sk LI
ardware Imp...
odel Refere...
eal-Time /...

- Comments

- Symbals

- Custom C...
--Dlebug

- |nterface

—Solver option

Fixed step size (fundamental zample time]: Iauto

[Automatically handle data transfers between tasks

D= T

Cancel Help Apply

20 Click the OK button.

3-45

3 Filters

21 Run the model.

=l fizedpoint_filter H=] B3

File Edit Wiew Simulation Format Tools Help

D|@H§|%E|9Q|P llIength...INormal jl@&”“

FDATaool 1.~
=T

e

Filter
Realization
Wizard

double =fin1fi_Enll

u Input Cwotput

¥

e yout

Signal Fram Filter Signal Tao
Mokepace Miafep ace

Ready [100% [[|ode3 G

22 Select Port/Signal Displays > Port Data Types from the Format menu.
You can you see that a signal of type double is entering your Filter block,
and a signal of type sfix16_En11 is exiting your Filter block.

Part 4 — Looking at Filtering Results

Now you can listen to and look at the results of the fixed-point filter you
designed and implemented.

23 Type

soundsc(yout,Fs)

at the command line to hear the output of the filter. You should hear a voice
say “MATLAB.” The noise portion of the signal should be close to inaudible.

3-46

Filter Realization Wizard

24 Type

figure
spectrogram(yout,256,[],[],Fs);colorbar

at the command line.

) Figure 1 -|E||L|
§

File Edit view Insert Tools Deskkop Window Help

Deda :|aams |0 8O

Qi fiicd

e

0a

0.45

0.4

035

03

Time

025

0.2
0.15
0.1

il
0.05 !

111N
1] 500 1000 1500 2000 2500 3000 3500
Frequency (Hz)

From the colorbars at the side of the input and output spectrograms, you can
see that the noise has been reduced by about 40 dB.

3-47

3 Filters

Setting the Filter Structure and Number of Filter
Sections

The Current Filter Information region of FDATool shows the structure
and the number of second-order sections in your filter.

) Filter Design & Analysis Tool - [fwizds

File Edit Analvsis Targets Wiew Windo

DeEESE >~ 28,

__ Current Fiter Infarmation

Structure: Direct form 1l
second-order-sections

Criler: g
Sections: 4

Stabile: YEs
Source: Designed

Change the filter structure and number of filter sections of your filter as
follows:

¢ Select Convert Structure from the Edit menu to open the Convert
Structure dialog box. For details, see “Converting to a New Structure” in
the Signal Processing Toolbox documentation.

¢ Select Convert to Second-order Sections from the Edit menu to
open the Convert to SOS dialog box. For details, see “Converting to
Second-Order Sections” in the Signal Processing Toolbox documentation.

3-48

Filter Realization Wizard

Note You might not be able to directly access some of the supported
structures through the Convert Structure dialog of FDATool. However,
you can access all of the structures by creating a dfilt filter object with the
desired structure, and then importing the filter into FDATool. To learn more
about the Import Filter panel, see “Importing a Filter Design” in the Signal
Processing Toolbox documentation.

Optimizing the Filter Structure

The Filter Realization Wizard can implement a digital filter using a Digital
Filter block or by creating a subsystem block that implements the filter using
Sum, Gain, and Delay blocks. The following procedure shows you how to
optimize the filter implementation:

1 Open the Realize Model pane of FDATool by clicking the Realize Model
button @I in the lower-left corner of FDATool.

2 Select the desired optimizations in the Optimization region of the Realize
Model pane. See the following descriptions and illustrations of each
optimization option.

__ Model £ Optimization ¥

Destination: ICurrent d v Optimize for zero gaing
Block name: [Fitter v Optimize for unity gaing

[~ Owerwrite generated 'Fiter' block [Optirize for negstive gaine
[+ Buildd model using basic elemerts

[Optirize delsry chains/

Realize Model |

ILoadin_q zession file ... done.

* Optimize for zero gains — Remove zero-gain paths.

3-49

3 Filters

e Optimize for unity gains — Substitute gains equal to one with a wire
(short circuit).

¢ Optimize for negative gains — Substitute gains equal to -1 with a wire
(short circuit), and change the corresponding sums to subtractions.

¢ Optimize delay chains — Substitute any delay chain made up of n unit
delays with a single delay by n.

The following diagram illustrates the results of each of these optimizations.

Output

Optimize for zero gains

¥
b

Input Output

Opiimize for unity gains

¥
ta

Input

Input Output Output

Opiimize for negolive gains

-

b2
() b () Oplimize delay chains D b D
b. z
Input Clutput

b1y B4

3-50

Analog Filter Design Block

Analog Filter Design Block

The Analog Filter Design block designs and implements analog IIR filters
with standard band configurations. All of the analog filter designs let you
specify a filter order. The other available parameters depend on the filter type
and band configuration, as shown in the following table.

Configuration Butterworth Chebyshev | | Chebyshev Il | Elliptic
Lowpass Qp Qp, Rp Q. R, Qp, Rp, R,
Highpass Qp Qp, Rp Q, R, Qp, Rp, R,
Bandpass Qpl, sz va sz, Rp Q. Qy,, R, va sz, Rp, R,
Bandstop QL Q8 R Q. Q, R, Q8L R, R,

The table parameters are

U Qp — passband edge frequency

U Qpl — lower passband edge frequency

* Q , — upper cutoff frequency
* Q_— stopband edge frequency

* Q_ — lower stopband edge frequency

* Q_, — upper stopband edge frequency
U Rp — passband ripple in decibels

* R, — stopband attenuation in decibels

For all of the analog filter designs, frequency parameters are in units of
radians per second.

The Analog Filter Design block uses a state-space filter representation, and
applies the filter using the State-Space block in the Simulink Continuous
library. All of the design methods use Signal Processing Toolbox functions to
design the filter:

3-51

3 Filters

3-52

The Butterworth design uses the toolbox function butter.

The Chebyshev type I design uses the toolbox function cheby1.

The Chebyshev type IT design uses the toolbox function cheby2.

The elliptic design uses the toolbox function ellip.

The Analog Filter Design block is built on the filter design capabilities of
Signal Processing Toolbox software. For more information on the filter design
algorithms, see “Filter Design and Implementation” in the Signal Processing
Toolbox documentation.

Note The Analog Filter Design block does not work with the Simulink
discrete solver, which is enabled when the Solver list is set to Discrete (no
continuous states) in the Solver pane of the Configuration Parameters
dialog box. Select one of the continuous solvers (such as ode4) instead.

Adaptive Filters

Adaptive Filters

In this section...

“Creating an Acoustic Environment” on page 3-53
“Creating an Adaptive Filter” on page 3-55
“Customizing an Adaptive Filter” on page 3-60

“Adaptive Filtering Demos” on page 3-64

Creating an Acoustic Environment

Adaptive filters are filters whose coefficients or weights change over time

to adapt to the statistics of a signal. They are used in a variety of fields
including communications, controls, radar, sonar, seismology, and biomedical
engineering.

In this topic, you learn how to create an acoustic environment that simulates
both white noise and colored noise added to an input signal. You later use
this environment to build a model capable of adaptive noise cancellation using

adaptive filtering:

1 At the MATLAB command line, type dspanc.

3-53

3 Filters

The Signal Processing Blockset Acoustic Noise Cancellation demo opens.

File Edit Wiew Simulaton Format Tools Help

=10l x|

O & +2R e 4|

=

o

| » = [re7

INorrnaI

Acoustic Noise Canceler
Maoisy Signal
Acoustic
Envircnment
] —>—Q\Q—b Exterior Mic I Input Output —— 3]
Filter
1T —— Filot’s Mic | Desired Hormalized Filterzd Signal
Filter Select | Step-size LMS Emor w
o » [filter=d |
P Adapt
: i bt [Waterfall
P Fleset Wis e o] Soo
Enable v v ‘1(3"‘ v F=
LMS Filter
Waterfall
o ! L‘\O Slow Adapt
V0 _D/o—q— 0.002
Reset o—a— 004
Fast Adapt
| Audio playback in MATLAB: |
Info
Criginal Moisy Filtered
Signal Signal Signal
Ready [100% [|FixedStepDiscrete v

3-54

2 Copy and paste the subsystem called Acoustic Environment into a new
model.

3 Double-click the Acoustic Environment subsystem.

Gaussian noise is used to create the signal sent to the Exterior Mic output
port. If the input to the Filter port changes from 0 to 1, the Digital Filter

block changes from a lowpass filter to a bandpass filter. The filtered noise
output from the Digital Filter block is added to signal coming from a .wav
file to produce the signal sent to the Pilot’s Mic output port.

Adaptive Filters

You have now created an acoustic environment. In the following topics, you
use this acoustic environment to produce a model capable of adaptive noise
cancellation.

Creating an Adaptive Filter

In the previous topic, “Creating an Acoustic Environment” on page 3-53, you
created a system that produced two output signals. The signal output at the
Exterior Mic port is composed of white noise. The signal output at the Pilot’s
Mic port is composed of colored noise added to a signal from a .wav file. In
this topic, you create an adaptive filter to remove the noise from the Pilot’s
Mic signal. This topic assumes that you are working on a Windows® operating
system:

1 If the model you created in “Creating an Acoustic Environment” on page
3-53 is not open on your desktop, you can open an equivalent model by
typing

doc_adapt1_audio
at the MATLAB command prompt.

2 From the Signal Processing Blockset Filtering library, and then from the
Adaptive Filters library, click-and-drag an LMS Filter block into the model
that contains the Acoustic Environment subsystem.

3 Double-click the LMS Filter block. Set the block parameters as follows,
and then click OK:

¢ Algorithm = Normalized LMS
¢ Filter length = 40

® Step size (mu) = 0.002

¢ Leakage factor (0 to 1) = 1

The block uses the normalized LMS algorithm to calculate the forty filter
coefficients. Setting the Leakage factor (0 to 1) parameter to 1 means
that the current filter coefficient values depend on the filter’s initial
conditions and all of the previous input values.

4 Click-and-drag the following blocks into your model.

3-55

3 Filters

Block Library Quantity
Constant Simulink/Sources 2
Manual Switch Simulink/Signal Routing 1
Terminator Simulink/Sinks 1
Downsample Signal Operations 1
To Audio Device Signal Processing Sinks 1
Waterfall Scope Signal Processing Sinks 1

5 Connect the blocks so that your model resembles the following figure.

E!adapt] * =] |

File Edit View Simulation Format Toaols Help

D|@ﬂ%|&ﬂ|@:ﬁ;@|ﬂ@|l II1D.I} INu:urrnaI j||:||z—lr

Acoustic
] Envircnment Cutput

l—b Inpu .
Excterior Mic h:}rmsllz&d Terminator
Constant Filter LMS Emor - | }
Filot's Mic _l_.,
Desired .
Manual Switch : Wis T hudie
1 LMS Filter Device

Constanti

Waterfall
I e o B

Downsample -
Waterfall

Ready [100% | | |ode4s i

6 Double-click the Constant block. Set the Constant value parameter to
0 and then click OK.

3-56

Adaptive Filters

7 Double-click the Downsample block. Set the Downsample factor, K
parameter to 32. Click OK.

The filter weights are being updated so often that there is very little change
from one update to the next. To see a more noticeable change, you need to
downsample the output from the Wts port.

8 Double-click the Waterfall Scope block. The Waterfall scope window opens.

9 Click the Scope parameters button.

+) adapti/Waterfall o] 4

File Edit WView Deskbop ‘Window Help
%@EI R[S o 0B ETHHE
5

|Scn|:ue parameters. .. (CtrI+E)| E

Tirme

Samples

20 -
Amplitude 0

=l

Stopped | |N:32 1 H:AD |u[EI]: It

The Parameters window opens.

3-57

‘ 3 Filters

+) Parameters: adapt1 /AWatetf: =0l x|

Tranzforms

Display

Axes | Data history | Triggering

Dizplay Properties

Dizplay traces: IE
|1

Update interwal:

Colormag: I atumn - i

Transparency
Mewneest: 1 I | 3 |
Cldest: A | | r |

10 Click the Axes tab. Set the parameters as follows:
® Y Min = -0.188
e Y Max =0.179

11 Click the Data history tab. Set the parameters as follows:
* History traces = 50

¢ Data logging = A1l visible

12 Close the Parameters window leaving all other parameters at their
default values.

You might need to adjust the axes in the Waterfall scope window in order
to view the plots.

3-58

Adaptive Filters

13 Click the Fit to view button in the Waterfall scope window. Then,
click-and-drag the axes until they resemble the following figure.

<} adapt1/wWaterfall |] 1
File Edit WView Deskbop ‘Window Help

EEE| xS L o || i® i JE B

Fit: to view {Ctrl+F)

&0
=
o -1
=
jr R
£
] 0
10 |
20 =
Amplitude 30 0
Stopped | |N:32 11 H:50 |u[EI]: It

14 In the model window, from the Simulation menu, select Configuration
Parameters. In the Select pane, click Solver. Set the parameters as
follows, and then click OK:

e Stop time = inf
* Type = Fixed-step

e Solver =Discrete (no continuous states)

15 Run the simulation and view the results in the Waterfall scope window.
You can also listen to the simulation using the speakers attached to your
computer.

16 Experiment with changing the Manual Switch so that the input to the
Acoustic Environment subsystem is either O or 1.

3-59

3 Filters

3-60

When the value is 0, the Gaussian noise in the signal is being filtered by a
lowpass filter. When the value is 1, the noise is being filtered by a bandpass
filter. The adaptive filter can remove the noise in both cases.

You have now created a model capable of adaptive noise cancellation. The
adaptive filter in your model is able to filter out both low frequency noise
and noise within a frequency range. In the next topic, “Customizing an
Adaptive Filter” on page 3-60, you modify the LMS Filter block and change its
parameters during simulation.

Customizing an Adaptive Filter

In the previous topic, “Creating an Adaptive Filter” on page 3-55, you created
an adaptive filter and used it to remove the noise generated by the Acoustic
Environment subsystem. In this topic, you modify the adaptive filter and
adjust its parameters during simulation. This topic assumes that you are
working on a Windows operating system:

1 If the model you created in “Creating an Acoustic Environment” on page
3-53 i1s not open on your desktop, you can open an equivalent model by
typing

doc_adapt2_audio

at the MATLAB command prompt.

2 Double-click the LMS filter block. Set the block parameters as follows,
and then click OK:

® Specify step size via = Input port
¢ Initial value of filter weights =0
e Select the Adapt port check box.

* Reset port = Non-zero sample

Adaptive Filters

The Block Parameters: LMS Filter dialog box should now look similar
to the following figure.

=] Function Block Parameters: LMS Filker =l
—LM5 Filker

Adapts the Filker weights based on the chosen algorithm For Filkering of the input signal.

Select the Adapt port check box to create an Adapt port on the block, When the input to

this port is nonzera, the block continuousky updates the Filker weights, When the input to
this port is zera, the Filker weights remain constant,

If the Reset port is enabled and a reset event occurs, the block resets the Filber weights
ko their initial walues.

Main | Daka Types I

—Parameters

Algorithm: INDrmaIized LM3 LI

Filker length: |4E|

Specify step size via: IInput pork ;I

Leakage Factor (O to 1) I 1.0

Initial value of Filter weights; ID

¥ Adapt port

Reset part: |Mon-zero sample LI

v output Filker weights

J- Ok I Cancel Help Apply

Step-size, Adapt, and Reset ports appear on the LMS Filter block.

3-61

3 Filters

3-62

3 Click-and-drag the following blocks into your model.

Block Library Quantity
Constant Simulink/Sources 6
Manual Switch Simulink/Signal Routing 3

4 Connect the blocks as shown in the following figure.

File Edit View Simulaton Format Tools Help

=0l x|

D EHE| LR 4 (2 1o

INorrnaI j| 2

Constant

1

1

Constantd

Constants

Ready

Manual Switch

. Manusal Switch2
1

Acoustic
Input

Envircnment J—b Dutput
Escterior Mic Desi 'ﬁg,ma”z‘ed Terminator
o s Wi p|StepsizEMs Ewor > }}
— Adapt

i Wis To AI-Jdi:}

Device

LMS Filter
Constant1

‘Waterfall

o] Scope

Constant2 'l’ 32 e
Downsample -
o Waterfall
Manual Switch1
Constant3
Constantd _._Q\g_
——
B Manual Switch2
Constant?
[100% | [ode4s

Adaptive Filters

5 Double-click the Constant2 block. Set the block parameters as follows,
and then click OK:

¢ Constant value = 0.002
e Select the Interpret vector parameters as 1-D check box.
e Sample time (-1 for inherited) = inf

¢ Output data type mode = Inherit via back propagation

6 Double-click the Constant3 block. Set the block parameters as follows,
and then click OK:

e Constant value = 0.04

Select the Interpret vector parameters as 1-D check box.
e Sample time (-1 for inherited) = inf

¢ Output data type mode = Inherit via back propagation

7 Double-click the Constant4 block. Set the Constant value parameter to
0 and then click OK.

8 Double-click the Constant6 block. Set the Constant value parameter to
0 and then click OK.

9 In the model window, from the Format menu, point to Port/Signal
Displays, and select Wide Nonscalar Lines and Signal Dimensions.

10 Double-click Manual Switch2 so that the input to the Adapt port is 1.

11 Run the simulation and view the results in the Waterfall scope window.
You can also listen to the simulation using the speakers attached to your
computer.

12 Double-click the Manual Switch block so that the input to the Acoustic
Environment subsystem is 1. Then, double-click Manual Switch2 so that
the input to the Adapt port to 0.

The filter weights displayed in the Waterfall scope window remain
constant. When the input to the Adapt port is 0, the filter weights are
not updated.

3-63

3 Filters

13 Double-click Manual Switch2 so that the input to the Adapt port is 1.
The LMS Filter block updates the coefficients.

14 Connect the Manual Switch1 block to the Constant block that represents
0.002. Then, change the input to the Acoustic Environment subsystem.
Repeat this procedure with the Constant block that represents 0.04.

You can see that the system reaches steady state faster when the step
size is larger.

15 Double-click the Manual Switch3 block so that the input to the Reset port
is 1.

The block resets the filter weights to their initial values. In the Block
Parameters: LMS Filter dialog box, from the Reset port list, you chose
Non-zero sample. This means that any nonzero input to the Reset port
triggers a reset operation.

You have now experimented with adaptive noise cancellation using the LMS
Filter block. You adjusted the parameters of your adaptive filter and viewed
the effects of your changes while the model was running.

For more information about adaptive filters, see the following block reference
pages:

e LMS Filter

e RLS Filter

¢ Block LMS Filter

¢ Fast Block LMS Filter

Adaptive Filtering Demos

Signal Processing Blockset software provides a collection of adaptive filtering
demos that illustrate typical applications of the adaptive filtering blocks,
listed in the following table.

3-64

Adaptive Filters

Commands for Opening Demos in

Adaptive Filtering Demos | MATLAB
LMS Adaptive Equalization 1msadeq
LMS Adaptive Time-Delay lmsadtde
Estimation

Nonstationary Channel kalmnsce
Estimation

RLS Adaptive Noise rlsdemo

Cancellation

Opening Demos

To open the adaptive filter demos, click the links in the preceding table in
the MATLAB Help browser (not in a Web browser), or type the demo names
provided in the table at the MATLAB command line. To access all Signal
Processing Blockset demos, type demo blockset signal at the MATLAB

command line.

3-65

3 Filters

Multirate Filters

3-66

In this section...

“Filter Banks” on page 3-66

“Multirate Filtering Examples” on page 3-74

Filter Banks

Multirate filters alter the sample rate of the input signal during the filtering
process. Such filters are useful in both rate conversion and filter bank
applications.

The Dyadic Analysis Filter Bank block decomposes a broadband signal into a
collection of subbands with smaller bandwidths and slower sample rates. The
Dyadic Synthesis Filter Bank block reconstructs a signal decomposed by the
Dyadic Analysis Filter Bank block.

To use a dyadic synthesis filter bank to perfectly reconstruct the output of a
dyadic analysis filter bank, the number of levels and tree structures of both
filter banks must be the same. In addition, the filters in the synthesis filter
bank must be designed to perfectly reconstruct the outputs of the analysis
filter bank. Otherwise, the reconstruction will not be perfect.

Dyadic Analysis Filter Banks

Dyadic analysis filter banks are constructed from the following basic unit.
The unit can be cascaded to construct dyadic analysis filter banks with either
a symmetric or asymmetric tree structure.

Wide-band input 4[Hp +— |3 ——=High-frequency subband

[P +—=]9 —= low-frequency subband
Each unit consists of a lowpass (LLP) and highpass (HP) FIR filter pair,
followed by a decimation by a factor of 2. The filters are halfband filters with

a cutoff frequency of F, / 4, a quarter of the input sampling frequency. Each
filter passes the frequency band that the other filter stops.

Multirate Filters

The unit decomposes its input into adjacent high-frequency and low-frequency

subbands. Compared to the input, each subband has half the bandwidth (due
to the half-band filters) and half the sample rate (due to the decimation by 2).

Note The following figures illustrate the concept of a filter bank, but not how
the block implements a filter bank; the block uses a more efficient polyphase

implementation.
| Level 1 y Level 2 Level 3 Leveln
U e 11 Iy —y
=l }—[HF (12 41y —yy
1P {12 {r{HP {12 Bly —y3
P E—* 11 =181 —=y,
[Input sumple period = T | I T 6y

HP: highpuss filter with £ - 1/4 of F,
LP: lowpass filter with f.=1,/4 of F,
12 downsample by 2

Output sample perind = 2%(T;) for output yp, 1 <k <n

Output snmple period = 2%{T5) for output y,, 1

n-Level Asymmetric Dyadic Analysis Filter Bank

Use the above figure and the following figure to compare the two tree
structures of the dyadic analysis filter bank. Note that the asymmetric
structure decomposes only the low-frequency output from each level, while
the symmetric structure decomposes the high- and low-frequency subbands

output from each level.

3-67

3 Filters

3-68

leveln

Level 1 level 2
[1 |
HP ()2
—HP 212
LP]2
u_
HP]2
o L e W B
LP]2

[Input somple period = Ty |

HP: highposs fitter with f_=1/4 of F,
LP: lowpass filter with £, 1,/4 of F,
J.2: downsomple by 2

L |P lg ——= yyn

Outputsample perind = 2%{Tg) for oll 2™ vutputs

n-Level Symmetric Dyadic Analysis Filter Bank

Multirate Filters

The following table summarizes the key characteristics of the symmetric and
asymmetric dyadic analysis filter bank.

Notable Characteristics of Asymmetric and Symmetric Dyadic Analysis Filter Banks

Characteristic N-Level Symmetric | N-Level Asymmetric

Low- and All the low-frequency | Each level’s low-frequency subband is
High-Frequency and high-frequency decomposed in the next level, and each level’s
Subband subbands in a level high-frequency band is an output of the filter
Decomposition are decomposed in the | bank.

next level.

Number of Output
Subbands

2n

n+1

Bandwidth and
Number of Samples
in Output Subbands

For an input with
bandwidth BW
and N samples,
all outputs have
bandwidth BW / 2"
and N/ 2" samples.

For an input with bandwidth BW and N
samples, y, has the bandwidth BW,, and N,
samples, where

BW/2" (1<k<n)
BW/2" (k=n+1)

N/2F (1<k<
N, - (n)

N/2" (k=n+1)
The bandwidth of, and number of samples in
each subband (except the last) is half those of
the previous subband. The last two subbands
have the same bandwidth and number of

samples since they originate from the same
level in the filter bank.

B, {

3-69

3 Filters

Notable Characteristics of Asymmetric and Symmetric Dyadic Analysis Filter Banks

(Continued)
Characteristic N-Level Symmetric | N-Level Asymmetric
Output Sample All output subbands | Sample period of kth output
Period have a sample period
nT . k
of 2%(T) _|2°@y) A<ks<n)
2"(T,;) (k=n+1
Due to the decimations by 2, the sample period
of each subband (except the last) is twice that
of the previous subband. The last two subbands
have the same sample period since they
originate from the same level in the filter bank.
Total Number of The total number of samples in all of the output subbands is equal to
Output Samples the number of samples in the input (due to the of decimations by 2 at
each level).
Wavelet In wavelet applications, the highpass and lowpass wavelet-based filters
Applications are designed so that the aliasing introduced by the decimations are
exactly canceled in reconstruction.

Dyadic Synthesis Filter Banks

Dyadic synthesis filter banks are constructed from the following basic unit.
The unit can be cascaded to construct dyadic synthesis filter banks with either
a asymmetric or symmetric tree structure as illustrated in the figures entitled
n-Level Asymmetric Dyadic Synthesis Filter Bank and n-Level Symmetric
Dyadic Synthesis Filter Bank.

High-frequency subband— Ta T HP j}— Wide-band autput
Low-frequency subband — 9 1P

Each unit consists of a lowpass (LLP) and highpass (HP) FIR filter pair,
preceded by an interpolation by a factor of 2. The filters are halfband filters

with a cutoff frequency of I,/ 4, a quarter of the input sampling frequency.
Each filter passes the frequency band that the other filter stops.

3-70

Multirate Filters

The unit takes in adjacent high-frequency and low-frequency subbands, and
reconstructs them into a wide-band signal. Compared to each subband input,
the output has twice the bandwidth and twice the sample rate.

Note The following figures illustrate the concept of a filter bank, but not how
the block implements a filter bank; the block uses a more efficient polyphase
implementation.

leveln level 3 Level 2 level 1

Subband with
highest frequencies

- <\ 17 14| Hp H

Ig— 4T, 3|11 f{Hp 112 fo{r

Ta HP Ta {Lp j

' "n_] E'Tsc-" T e HP '@— o —HTa 1HLP

Subband with J [Dutput somple period = T, |
lowest frequencies 1= 6T T2 (1P

13—aT

b i

. - - HP: highposs filrer with £ 1/4 af F,
Inputsumple period = 2[T) for input uy, 1= k=n LP: lowpuss Filter with f. 1/4 of F,
Inputsomple period = 7™{T,,) far input u,4 T2: upsample by 2

n-Level Asymmetric Dyadic Synthesis Filter Bank

Use the above figure and the following figure to compare the two tree
structures of the dyadic synthesis filter bank. Note that in the asymmetric
structure, the low-frequency subband input to each level is the output of
the previous level, while the high-frequency subband input to each level is
an input to the filter bank. In the symmetric structure, both the low- and
high-frequency subband inputs to each level are outputs from the previous
level.

3-71

3 Filters

Leveln Level 2 Level |
| I 1
Subband with g ——=T7 —{HP |
highest frequencies } R A SN
Il ——=T2 —LF |
Ta —{HF
I —T2 {1
E)—- R V0 e LU
I L LA
Qv
I ——=7T2 WP |
E)—- o —{T2 F—He
I —— T2 —LF
To | —
| J I ——*T2 1 | ‘
< sbband wilh @7 co—{T7 1P | | Output sample period = T, |
bowest frequencies 12 T1 HP: high puss filter with T, < 1/4 of F,
LP: [owpass filter with . =1/4 of F,
|Inpu15umpln perind = 2%{T_) for all 2% inputs | T2 upsnmple by 2

n-Level Symmetric Dyadic Synthesis Filter Bank

The following table summarizes the key characteristics of symmetric and
asymmetric dyadic synthesis filter banks.

3-72

Multirate Filters

Notable Characteristics of Asymmetric and Symmetric Dyadic Synthesis Filter Banks

Characteristic

N-Level Symmetric

N-Level Asymmetric

Input Paths
Through the
Filter Bank

Both the high-frequency and
low-frequency input subbands to
each level (except the first) are
the outputs of the previous level.
The inputs to the first level are
the inputs to the filter bank.

The low-frequency subband input
to each level (except the first) is the
output of the previous level. The
low-frequency subband input to the
first level, and the high-frequency
subband input to each level, are
inputs to the filter bank.

Number of Input | 2° n+1
Subbands
Bandwidth All inputs subbands have For an output with bandwidth BW

and Number of
Samples in Input
Subbands

bandwidth BW / 2® and N / 22
samples, where the output has
bandwidth BW and N samples.

and N samples, the kth input subband

has the following bandwidth and
number of samples.

BW 2k
BW /2"

A<k<n)

BW, =
(k=n+1)

A<k<n)
(k=n+1)

N/2k
N/2"

Input Sample
Periods

All input subbands have a sample
period of 2%(T,), where the output
sample period is 7T .

Sample period of kth input subband

|2k, asks<n
2"(Ty,) (k=n+1)

where the output sample period is 7.

3-73

3 Filters

3-74

Notable Characteristics of Asymmetric and Symmetric Dyadic Synthesis Filter Banks

(Continued)

Characteristic

N-Level Symmetric

N-Level Asymmetric

Total Number of
Input Samples

of samples in all of the input subbands.

The number of samples in the output is always equal to the total number

Wavelet In wavelet applications, the highpass and lowpass wavelet-based filters
Applications are carefully selected so that the aliasing introduced by the decimation in
the dyadic analysis filter bank is exactly canceled in the reconstruction
of the signal in the dyadic synthesis filter bank.
For more information, see Dyadic Synthesis Filter Bank.
Multirate Filtering Examples
Signal Processing Blockset software provides a collection of multirate filtering
demos and example models that illustrate typical applications of the multirate
filtering blocks. To open the demos and example models, click on the links in
the following tables in the MATLAB Help browser (not in a Web browser), or
type the names provided at the MATLAB command line. To access all Signal
Processing Blockset demos, type demo blockset signal at the MATLAB
command line.
Command for
Multirate Opening Demos
Filtering Demos | Description in MATLAB
Audio Sample Illustrates sample rate conversion of an audio dspaudiosrc
Rate Conversion signal from 22.050 kHz to 8 kHz using a multirate
FIR rate conversion approach
Sigma-Delta A/D | Illustrates analog-to-digital conversion using a dspsdadc
Converter sigma-delta algorithm implementation
Wavelet Uses the Dyadic Analysis Filter Bank and Dyadic dspwavelet
Reconstruction Synthesis Filter Bank blocks to show both the
and Noise perfect reconstruction property of wavelets and an
Reduction application for noise reduction

Multirate Filters

Multirate
Filtering
Example Models

Description

Command for
Opening Example
Models in MATLAB

Frame-Based
Narrowband
Bandpass Filter

Uses FIR Decimation and Interpolation blocks
in multiples stages to create a frame-based

narrowband bandpass filter with low computational
load

doc_mrf_nbpf

Frame-Based
Narrowband
Highpass Filter

Uses FIR Decimation and Interpolation blocks
in multiples stages to create a frame-based

narrowband highpass filter with low computational
load

doc_mrf_nhpf

Frame-Based
Narrowband
Lowpass Filter

Uses FIR Decimation and Interpolation blocks
in multiples stages to create a frame-based

narrowband lowpass filter with low computational
load

doc_mrf_nlpf

Frame-Based
Wideband
Highpass Filter

Uses FIR Decimation and Interpolation blocks in
multiples stages to create a frame-based wideband
highpass filter with low computational load

doc_mrf_whpf

Frame-Based
Wideband
Lowpass Filter

Uses FIR Decimation and Interpolation blocks in
multiples stages to create a frame-based wideband
lowpass filter with low computational load

doc_mrf_wlpf

Sample-Based Uses FIR Decimation and Interpolation blocks doc_mrf_nbp
Narrowband in multiples stages to create a sample-based
Bandpass Filter narrowband bandpass filter with low computational
load
Sample-Based Uses FIR Decimation and Interpolation blocks doc_mrf_nhp
Narrowband in multiples stages to create a sample-based
Highpass Filter narrowband highpass filter with low computational
load
Sample-Based Uses FIR Decimation and Interpolation blocks doc_mrf_nlp

Narrowband
Lowpass Filter

in multiples stages to create a sample-based

narrowband lowpass filter with low computational
load

3-75

3 Filters

3-76

Multirate
Filtering
Example Models

Description

Command for
Opening Example
Models in MATLAB

Sample-Based
Wideband
Highpass Filter

Uses FIR Decimation and Interpolation blocks in
multiples stages to create a sample-based wideband
highpass filter with low computational load

doc_mrf_whp

Sample-Based
Wideband
Lowpass Filter

Uses FIR Decimation and Interpolation blocks in
multiples stages to create a sample-based wideband
lowpass filter with low computational load

doc_mrf_wlp

Transforms

The Signal Processing Blockset Transforms library provides blocks for a
number of transforms that are of particular importance in signal processing

applications.

¢ “Transforming Time-Domain Data into the Frequency Domain” on page 4-2
¢ “Transforming Frequency-Domain Data into the Time Domain” on page 4-7
¢ “Linear and Bit-Reversed Output Order” on page 4-12

¢ “Calculating the Channel Latencies Required for Wavelet Reconstruction”
on page 4-14

4 Transforms

Transforming Time-Domain Data into the Frequency
Domain

When you want to transform time-domain data into the frequency domain,
use the FFT block. You can find additional background information on
transform operations in the “Signal Processing Toolbox” documentation.

In this example, you use the Sine Wave block to generate two frame-based

sinusoids, one at 15 Hz and the other at 40 Hz. You sum the sinusoids
point-by-point to generate the compound sinusoid

u = sin(30xt) + sin (807xt)

Then, you transform this sinusoid into the frequency domain using an FFT
block:

1 At the MATLAB command prompt, type doc_fft_tut.

The FFT Example opens.

4-2

Transforming Time-Domain Data into the Frequency Domain

(] doc_fft_tut 1ol x|

File Edit WView Simulaton Format Tools Help

| HS | $ER(e 42 & r o roms =l &

FFTExample In this examgple, the frequency content of 8 summed sinusoid is viewed on 8 scope.
P)

= .
I E : IR N Qe %) S I) M

Freq

Sine Waves Matrix FFT C:j‘rclsxt: —
Sum Magnitude-Angle éj.iu:

Copyright 2004-2008 The MathWorks, Inc.

Ready |100% | | [FixedstepDiscrete v

2 Double-click the Sine Wave block. The Block Parameters: Sine Wave
dialog box opens.

3 Set the block parameters as follows:
e Amplitude = 1
* Frequency = [15 40]

Phase offset = 0

Sample time = 0.001

Samples per frame = 128

4-3

4 Transforms

Based on these parameters, the Sine Wave block outputs two, frame-based
sinusoidal signals with identical amplitudes, phases, and sample times.
One sinusoid oscillates at 15 Hz and the other at 40 Hz.

4 Save these parameters and close the dialog box by clicking OK.

5 Double-click the Matrix Sum block. The Block Parameters: Matrix Sum
dialog box opens.

6 Set the Sum over parameter to Specified dimension and the Dimension
parameter to 2. Click OK to save your changes.

Because each column represents a different signal, you need to sum along
the individual rows in order to add the values of the sinusoids at each
time step.

7 Double-click the Complex to Magnitude-Angle block. The Block
Parameters: Complex to Magnitude-Angle dialog box opens.

8 Set the Output parameter to Magnitude, and then click OK.

This block takes the complex output of the FFT block and converts this
output to magnitude.

9 Double-click the Vector Scope block.

10 Set the block parameters as follows, and then click OK:
® (Click the Scope Properties tab.
¢ Input domain = Frequency
e (Click the Axis Properties tab.

* Frequency units = Hertz (This corresponds to the units of the input
signals.)

* Frequency range = [0...Fs/2]
® Select the Inherit sample time from input check box.

e Amplitude scaling = Magnitude

Transforming Time-Domain Data into the Frequency Domain

11 Run the model.

The scope shows the two peaks at 15 and 40 Hz, as expected.

) doc_fft_tut/vector Scope -0 x|

File #xes Channels Window Help 1u

G0

&0

40

Amplitude

20

0/ | |J

0 50 100 150 200 250 300 350 400 450 500
Frame: 1036 Frequency (Hz)

You have now transformed two, frame-based sinusoidal signals from the
time domain to the frequency domain.

Note that the sequence of FFT, Complex to Magnitude-Angle, and Vector

Scope blocks could be replaced by a single Spectrum Scope block, which
computes the magnitude FFT internally. Other blocks that compute the FFT

4-5

4 Transforms

internally are the blocks in the Power Spectrum Estimation library. See
“Power Spectrum Estimation” on page 6-6 for more information about these
blocks.

4-6

Transforming Frequency-Domain Data into the Time Domain

Transforming Frequency-Domain Data into the Time
Domain

When you want to transform frequency-domain data into the time domain,
use the IFFT block. You can find additional background information on
transform operations in the “Signal Processing Toolbox” documentation.

In this example, you use the Sine Wave block to generate two frame-based
sinusoids, one at 15 Hz and the other at 40 Hz. You sum the sinusoids

point-by-point to generate the compound sinusoid, u = sin(30xt)+sin(80xt) .
You transform this sinusoid into the frequency domain using an FFT block,
and then immediately transform the frequency-domain signal back to the
time domain using the IFFT block. Lastly, you plot the difference between
the original time-domain signal and transformed time-domain signal using
a scope:

1 At the MATLAB command prompt, type doc_ifft_tut.

The IFFT Example opens.

4 Transforms

(] doc_ift_tut 1ol x|

File Edit View Simulation Format Tools Help

NEHE| BB 42 r o |[Nomal | & e B

In this example, the IFFT blodk reconstructs the original time-domain signal from the
|IFFT Example freqguency-domain cutput of the FFT blodk.

DEF
T g W FFT R IFFT el
=

') Time

Sine Wave M atriz FET IFET Vecto
Sum Soope

Copyright 2004-2008 The MathWorks, Inc.
Ready [100% | | [FixedstepDiscrete v

2 Double-click the Sine Wave block. The Block Parameters: Sine Wave
dialog box opens.

3 Set the block parameters as follows:
e Amplitude = 1
* Frequency = [15 40]

Phase offset = 0

Sample time = 0.001

Samples per frame = 128

4-8

Transforming Frequency-Domain Data into the Time Domain

Based on these parameters, the Sine Wave block outputs two, frame-based
sinusoidal signals with identical amplitudes, phases, and sample times.
One sinusoid oscillates at 15 Hz and the other at 40 Hz.

4 Save these parameters and close the dialog box by clicking OK.

5 Double-click the Matrix Sum block. The Block Parameters: Matrix Sum
dialog box opens.

6 Set the Sum over parameter to Specified dimension and the Dimension
parameter to 2. Click OK to save your changes.

Because each column represents a different signal, you need to sum along
the individual rows in order to add the values of the sinusoids at each
time step.

7 Double-click the FFT block. The Block Parameters: FFT dialog box
opens.

8 Select the Output in bit-reversed order check box., and then click OK.

9 Double-click the IFFT block. The Block Parameters: IFFT dialog box
opens.

10 Set the block parameters as follows, and then click OK:
¢ Select the Input is in bit-reversed order check box.

¢ Select the Input is conjugate symmetric check box.

Because the original sinusoidal signal is real valued, the output of the FFT
block is conjugate symmetric. By conveying this information to the IFFT
block, you optimize its operation.

Note that the Sum block subtracts the original signal from the output of
the IFFT block, which is the estimation of the original signal.

11 Double-click the Vector Scope block.

12 Set the block parameters as follows, and then click OK:
® (Click the Scope Properties tab.

¢ Input domain = Time

4 Transforms

13 Run the model.

o

File #Axes Channels Window Help 1u

10

Amplitude

20 40 B0 80 100 120
Frame: 280 Time {ms)

The flat line on the scope suggests that there is no difference between the
original signal and the estimate of the original signal. Therefore, the IFFT
block has accurately reconstructed the original time-domain signal from
the frequency-domain input.

4-10

Transforming Frequency-Domain Data into the Time Domain

14 Right-click in the Vector Scope window, and select Autoscale.

) doc_ifft_tut{Vector Scope =10l x|

File #Axes Channels Window Help 1u

%10

Amplitude

0 20 40 B0 80 100 120
Frame: 280 Time {ms)

In actuality, the two signals are identical to within round-off error. The
previous figure shows the enlarged trace. The differences between the
two signals is on the order of 1015,

4-11

4 Transforms

Linear and Bit-Reversed Output Order

In this section...
“FFT and IFFT Blocks Data Order” on page 4-12
“Finding the Bit-Reversed Order of Your Frequency Indices” on page 4-12

FFT and IFFT Blocks Data Order

The FFT block enables you to output the frequency indices in linear or
bit-reversed order. Because linear ordering of the frequency indices requires a
bit-reversal operation, the FFT block may run more quickly when the output
frequencies are in bit-reversed order.

The input to the IFFT block can be in linear or bit-reversed order. Therefore,
you do not have to alter the ordering of your data before transforming it back
into the time domain. However, the IFFT block may run more quickly when
the input is provided in bit-reversed order.

Finding the Bit-Reversed Order of Your Frequency
Indices

Two numbers are bit-reversed values of each other when the binary
representation of one is the mirror image of the binary representation of
the other. For example, in a three-bit system, one and four are bit-reversed
values of each other, since the three-bit binary representation of one, 001, is
the mirror image of the three-bit binary representation of four, 100. In the
diagram below, the frequency indices are in linear order. To put them in
bit-reversed order

1 Translate the indices into their binary representation with the minimum
number of bits. In this example, the minimum number of bits is three
because the binary representation of 7 is 111.

2 Find the mirror image of each binary entry, and write it beside the original
binary representation.

3 Translate the indices back to their decimal representation.

4-12

Linear and Bit-Reversed Output Order

The frequency indices are now in bit-reversed order.

Step 2: Find mirrar image of

each entry.
Linear Order Bit-Beversed Order
[Ina three bit system)
[u] oo =000 o
1 oo 100 4
2 Stepl:Tronslote. 10 wo1o Sepl:Transhe. 2
i to hinary 101010 110 back to decimal 15
. 001 -
5 representatian. 101 w101 re prese ntatian. -
5] 110 011 3
7 11— 111 7

The next diagram illustrates the linear and bit-reversed outputs of the FFT
block. The output values are the same, but they appear in different order.

Linearly ordered Outputin
frequency indices line ar order
] — T
1 — —4+97i
Input to FET block 2 I —4+4i
{ must be linear order) 3 — _a+ 170
4 o -4
[1] 5 —— —4-17i
2 g — —4-4i
i Dutput can - -8
5 o FPT b beardered
g in two ways.
7 Bit-reve rsad Qutput in
H frequency indices bit-reversed order
(L J— % |
4 -
2 —_— -4+ 4i
G —_— -4-4di
1 R — 44 9.7
5 —_— -4-17i
3 — -4+ LTi
7 — -a-a7i)

4-13

4 Transforms

Calculating the Channel Latencies Required for Wavelet
Reconstruction

In this section...

“Analyzing Your Model” on page 4-14

“Calculating the Group Delay of Your Filters” on page 4-16
“Reconstructing the Filter Bank System” on page 4-18
“Equalizing the Delay on Each Filter Path” on page 4-18
“Updating and Running the Model” on page 4-21

“References” on page 4-22

Analyzing Your Model

The following sections guide you through the process of calculating the
channel latencies required for perfect wavelet reconstruction. This example
uses the doc_wavelets model, but you can apply the process to perform
perfect wavelet reconstruction in any model. To open the example model, type
doc_wavelets at the MATLAB command line.

Note You must have a Wavelet Toolbox™ product license to run the
doc_wavelets model.

4-14

Calculating the Channel Latencies Required for Wavelet Reconstruction

=

File Edit WView Simulaton Format Tools Help

D EH& 2R | 42 » =i |[Nomal AReEREr REE

|Wavelet Reconstruction |

] N
S Input "
Tims
.29 .
‘B—— P —%— Input Signal
Lin =11
il >
Ll
| .
—[- j
Chirp .
2: Asym ™1 2: Asym
Dyadic Anslysis Dyadic Synthasis - IEI
Filter Bank Filter Bank L

Output signal
Copyright 2008 The MathWorks, Inc.

Ready [100% | [|FixedstepDiscrete 4

Before you can begin calculating the latencies required for perfect wavelet
reconstruction, you must know the types of filters being used in your model.

The Dyadic Analysis Filter Bank and the Dyadic Synthesis Filter Bank blocks
in the doc_wavelets model have the following settings:

¢ Filter = Biorthogonal

Filter order [synthesis/analysis] = [3/5]

Number of levels = 3

®* Tree structure = Asymmetric

¢ Input =Multiple ports

Based on these settings, the Dyadic Analysis Filter Bank and the Dyadic

Synthesis Filter Bank blocks construct biorthogonal filters using the Wavelet
Toolbox wfilters function.

4-15

4 Transforms

4-16

Calculating the Group Delay of Your Filters

Once you know the types of filters being used by the Dyadic Analysis and
Dyadic Synthesis Filter Bank blocks, you need to calculate the group delay of
those filters. To do so, you can use the Signal Processing Toolbox fvtool.

Before you can use fvtool, you must first reconstruct the filters in the
MATLAB workspace. To do so, type the following code at the MATLAB
command line:

[Lo_D, Hi_D, Lo_R, Hi_R] = wfilters('bior3.5")

Where Lo_D and Hi_D represent the low- and high-pass filters used by the
Dyadic Analysis Filter Bank block, and Lo_R and Hi_R represent the low- and
high-pass filters used by the Dyadic Synthesis Filter Bank block.

After you construct the filters in the MATLAB workspace, you can use
fvtool to determine the group delay of the filters. To analyze the low-pass
biorthogonal filter used by the Dyadic Analysis Filter Bank block, you must
do the following:

e Type fvtool(Lo D) at the MATLAB command line to launch the Filter
Visualization Tool.

® When the Filter Visualization Tool opens, click the Group delay response
button (#%) on the toolbar, or select Group Delay Response from the

Analysis menu.

Based on the Filter Visualization Tool’s analysis, you can see that the group
delay of the Dyadic Analysis Filter Bank block’s low-pass biorthogonal filter is
5.5.

Calculating the Channel Latencies Required for Wavelet Reconstruction

) Filter Visualization Tool - Figure 1: Group Delay _|EI|5|
File Edit Analysis Insert View Debug Desktop Window Help 1' | Ao
Dl R OTNN\NU 2REeX EHE @BDBESDO
Bl bl Bd | & [T — B k] @ & A
Group Delay
! ! ! ! ! ! !
FP-S | P S AR R ER— AR R ER— SR
] : : : : : : :
[=8 1 1 1 1 1 1 1
i HEE R S A
£ ‘ ‘ ‘ ‘ ‘ ‘ ‘
5 : i i i i i i
I]J 1 1 1 1 1 1 1
- I R S [Lecoooo [P [Lecoooo [P I]
= : : : : : : :
= : : : : : : :
O S3p---d-t-mmmmmeee e i riiaiaii i i riiaiaii i e -
i i i i i i i
0.3 0.4 0.5 0.6 0.7 0.2 0.9
Marmalized Freguency (=x rad/zample)
A

\

Group delay = 5.5

Note Repeat this procedure to analyze the group delay of each of the filters
in your model. This section does not show the results for each filter in the
doc_wavelets model because all wavelet filters in this particular example
have the same group delay.

4-17

4 Transforms

4-18

F1

12

Reconstructing the Filter Bank System

To determine the delay introduced by the analysis and synthesis filter bank
system, you must reconstruct the tree structures of the Dyadic Analysis
Filter Bank and the Dyadic Synthesis Filter Bank blocks. To learn more
about constructing tree structures for the Dyadic Analysis Filter Bank and
Dyadic Synthesis Filter Bank blocks, see the following sections of the Signal
Processing Blockset User’s Guide:

¢ “Dyadic Analysis Filter Banks” on page 3-66
® “Dyadic Synthesis Filter Banks” on page 3-70
Because the filter blocks in the doc_wavelets model use biorthogonal filters

with three levels and an asymmetric tree structure, the filter bank system
appears as shown in the following figure.

v

Delay N » t9 | G1 | Path4

Fo

12

F1

—{ 12 »| Delay M

v

t9 [G1 |12 || GO | Path3

Fo

12

Fo

—lla PPl PPl 12161 {12 [G0 [%2 [GO | Path2

FO

12

FO

,lzg,FO>l24>T2—>G0—>T2—>G0—>T2—>G0 Path 1

FO = Delay due to low-pass filter of Dyadic Analysis Filter Bank
F1 = Delay due to high-pass filter of Dyadic Analysis Filter Bank
GO = Delay due to low-pass filter of Dyadic Synthesis Filter Bank
G1 =Delay due to high-pass filter of Dyadic Synthesis Filter Bank

The extra delay values of M and N on paths 3 and 4 in the previous figure
ensure that the total delay on each of the four filter paths is identical.

Equalizing the Delay on Each Filter Path

Now that you have reconstructed the filter bank system, you can calculate the
delay on each filter path. To do so, use the following Noble identities:

Calculating the Channel Latencies Required for Wavelet Reconstruction

First Noble Identity

—| 72

Sec

—»

12

— Equivalentto —

ond Noble Identity

You can apply the Noble identities by summing the delay on each signal path
from right to left. The first Noble identity indicates that moving a delay of 1
before a downsample of 2 is equivalent to multiplying that delay value by 2.
Similarly, the second Noble identity indicates that moving a delay of 2 before
an upsample of 2 is equivalent to dividing that delay value by 2.

The fvtool analysis in step 1 found that both the low- and high-pass filters of
the analysis filter bank have the same group delay (', = F, = 5.5). Thus, you
can use F'to represent the group delay of the analysis filter bank. Similarly,
the group delay of the low- and high-pass filters of the synthesis filter bank is
the same (G,=G,=5.5), so you can use G to represent the group delay of the

—»

72

— Equivalentto —

synthesis filter bank.

The following figure shows the filter bank system with the intermediate delay

12

71

71

>

T2

sums displayed below each path.

4-19

4 Transforms

— F — |2 . » Delay N . » t9 (> G | Path4
2NJ:r(F+G) 2N:+G N+l:).5G 0.56 G

— F — 1 | F — 1 : » Delay M : M 1o - G - I - G | Path3
4M:+3(F+G) 4M+2:F+3G 2M+F:+1.5G 2M:+1.5G M+0:.75G 0.7:5G 1.éG 0:5G G

o L e 2 e i e R 22 s i e e L e S e R D e S v L S R
7(Fi-G) 6Fi7G 3F+:3.5G 2FJi3.5G F+1.:75G 1.7:5G O.S;SG 1.7:5G 0.7:5G 1.éG 0.:5G G

| F U L e LR e e e LG e T L G e T) 6| Pathd
7(Fi-G) 6F1£7G 3F+:3.5G 2FJi3.SG F+1.:75G 1.7:5G 0.8;5G 1.7:5G 0.7:5G 1.éG 0.:5G G

4-20

F = Delay due to Dyadic Analysis Filter Bank
G = Delay due to Dyadic Synthesis Filter Bank

You can see from the previous figure that the signal delays on paths 1 and

2 are identical: 7(F+G). Because each path of the filter bank system has
identical delay, you can equate the delay equations for paths 3 and 4 with the
delay equation for paths 1 and 2. After constructing these equations, you
can solve for M and N, respectively:

Path3=Path1=4M+3(F+G)=7F+Q)
>M=F+G

Path4 =Path1=2N+(F+G) =7F+G)
=>N=3(F+G)

The fvtool analysis in step 1 found the group delay of each biorthogonal
wavelet filter in this model to be 5.5 samples. Therefore, F = 5.5 and G =
5.5. By inserting these values into the two previous equations, you get M =
11 and N = 33. Because the total delay on each filter path must be the same,
you can find the overall delay of the filter bank system by inserting F = 5.5

Calculating the Channel Latencies Required for Wavelet Reconstruction

and G = 5.5 into the delay equation for any of the four filter paths. Inserting
the values of F and G into 7(F+G) yields an overall delay of 77 samples for
the filter bank system of the doc_wavelets model.

Updating and Running the Model

Now that you know the latencies required for perfect wavelet reconstruction,
you can incorporate those delay values into the model. The doc_wavelets
model has already been updated with the correct delay values (M =11, N =
33, Overall = 77), so it 1s ready to run.

=

File Edit WView Simulaton Format Tools Help

N SHS| $BR (== 4 =] » = [|Noml AR Rss hEE®

|Wavelet Reconstruction |

o e v
Bel] : Input Bel] T
ims
M 2 N para e . N
= L - L 7 Input Signal
G . i
. [B4x1]

Chirg

T8xi] N
L

20 Asym

Dyadic Synthasis
Filter Bank Filter Bank

Output signal
Copyright 2008 The MathWorks, Inc.

Ready [100% | [|FixedstepDiscrete 4

After you run the model, examine the reconstruction error in the Difference
scope. To further examine any particular areas of interest, use the zoom tools
available on the toolbar of the scope window or from the View menu.

4-21

4 Transforms

ol

File Wiew Axes Channels Window Help "

AP PX

x 1077

10

-5 MW)W
2 4 B g

0
Frame: 17 Time {mins)

i

Amplitude
=

10 12 14 16

References

[1] Strang, G. and Nguyen, T. Wavelets and Filter Banks. Wellesley, MA:
Wellesley-Cambridge Press, 1996.

4-22

Quantizers

This chapter shows you how to design and use scalar and vector quantizer
blocks. You create several scalar quantizer blocks and use them to encode and

decode signals in your model. Then, you use vector quantizer encoder and
decoder blocks to quantize vectors of data.

e “Scalar Quantizers” on page 5-2

* “Vector Quantizers” on page 5-10

5 Quantizers

Scalar Quantizers

5-2

In this section...

“Analysis and Synthesis of Speech” on page 5-2
“Identifying Your Residual Signal and Reflection Coefficients” on page 5-4

“Creating a Scalar Quantizer” on page 5-5

Analysis and Synthesis of Speech

You can use blocks from the Signal Processing Blockset Quantizers library
to design scalar quantizer encoders and decoders. A speech signal is
usually represented in digital format, which is a sequence of binary bits.
For storage and transmission applications, it is desirable to compress a
signal by representing it with as few bits as possible, while maintaining its
perceptual quality. Quantization is the process of representing a signal with
a reduced level of precision. If you decrease the number of bits allocated for
the quantization of your speech signal, the signal is distorted and the speech
quality degrades.

In narrowband digital speech compression, speech signals are sampled at

a rate of 8000 samples per second. Each sample is typically represented

by 8 bits. This corresponds to a bit rate of 64 kbits per second. Further
compression is possible at the cost of quality. Most of the current low bit rate
speech coders are based on the principle of linear predictive speech coding.
This topic shows you how to use the Scalar Quantizer Encoder and Scalar
Quantizer Decoder blocks to implement a simple speech coder.

1 Type doc_sq_examplel at the MATLAB command line to open the example
model.

Scalar Quantizers

E! doc_sq_examplel - | I:Illl

File Edit Wiew Simulaton Format Tools Help

DeEHE&|fER (e 0|22 r 5po | [om AJEEhEy hEES®

Re-synthesized
Signal

i In ~. .
Do 1 hammin) Digital g [-
igital ACF Levlnsnrk DIQItEIOut Digital
Filter /\ Durbin | Filter Filter

R '

Analysis Synthesis
Original Frocessed
Signal Signal
Ready [100% [[[FixedStepDiscrete v

This model preemphasizes the input speech signal by applying an FIR
filter. Then, it calculates the reflection coefficients of each frame using the
Levinson-Durbin algorithm. The model uses these reflection coefficients

to create the linear prediction analysis filter (lattice-structure). Next,

the model calculates the residual signal by filtering each frame of the
preemphasized speech samples using the reflection coefficients. The
residual signal, which is the output of the analysis stage, usually has a
lower energy than the input signal. The blocks in the synthesis stage of the
model filter the residual signal using the reflection coefficients and apply an
all-pole deemphasis filter. Note that the deemphasis filter is the inverse of
the preemphasis filter. The result is the full recovery of the original signal.

2 Run this model.

3 Double-click the Original Signal and Processed Signal blocks and listen to
both the original and the processed signal.

5-3

5 Quantizers

There is no significant difference between the two because no quantization
was performed.

To better approximate a real-world speech analysis and synthesis system, you
need to quantize the residual signal and reflection coefficients before they are
transmitted. The following topics show you how to design scalar quantizers to
accomplish this task.

Identifying Your Residual Signal and Reflection
Coefficients

In the previous topic, “Analysis and Synthesis of Speech” on page 5-2,

you learned the theory behind the LPC Analysis and Synthesis of Speech
example model. In this topic, you define the residual signal and the
reflection coefficients in your MATLAB workspace as the variables E and K,
respectively. Later, you use these values to create your scalar quantizers:

1 Open the example model by typing doc_sq_examplel at the MATLAB
command line.

2 Save the model file as doc_sq_example2 in your working folder.

3 From the Signal Processing Sinks library, click-and-drag two Signal To
Workspace blocks into your model.

4 Connect the output of the Levinson-Durbin block to one of the Signal To
Workspace blocks.

5 Double-click this Signal To Workspace block and set the Variable name
parameter to K. Click OK.

6 Connect the output of the Time-Varying Analysis Filter block to the other
Signal To Workspace block.

Scalar Quantizers

7 Double-click this Signal To Workspace block and set the Variable name
parameter to E. Click OK.

You model should now look similar to this figure.

=] doc_sq_example2 10l x|
File Edit View Simulation Format Tools Help

OleEd&| B2 e 4 2@ r ops | [rom ARl mEE®

Signal To
Workspacs
_“"’l hammin:
Digital Levinsol

Re-synthesized
Signal

Analysis Synthesis
Audio playback in MATLAB:
Signal To
Criginal Proocessed Workspace1
Signal Signal
Ready [100% [[FixedStepDiscrete 7

8 Run your model.

The residual signal, E, and your reflection coefficients, K, are defined in the
MATLAB workspace. In the next topic, you use these variables to design
your scalar quantizers.

Creating a Scalar Quantizer
In this topic, you create scalar quantizer encoders and decoders to quantize
the residual signal, E, and the reflection coefficients, K:

1 If the model you created in “Identifying Your Residual Signal and Reflection
Coefficients” on page 5-4 is not open on your desktop, you can open an

5-5

5 Quantizers

equivalent model by typing doc_sq_example2 at the MATLAB command
prompt.

2 Run this model to define the variables E and K in the MATLAB workspace.

3 From the Quantizers library, click-and-drag a Scalar Quantizer Design
block into your model. Double-click this block to open the SQ Design Tool
GUL

4 For the Training Set parameter, enter K.

The variable K represents the reflection coefficients you want to quantize.
By definition, they range from -1 to 1.

Note Theoretically, the signal that is used as the Training Set parameter
should contain a representative set of values for the parameter to be
quantized. However, this example provides an approximation to this global
training process.

5 For the Number of levels parameter, enter 128.

Assume that your compression system has 7 bits to represent each
reflection coefficient. This means it is capable of representing 27 or 128
values. The Number of levels parameter is equal to the total number of
codewords in the codebook.

6 Set the Block type parameter to Both.

7 For the Encoder block name parameter, enter SQ Encoder -
Reflection Coefficients

8 For the Decoder block name parameter, enter SQ Decoder -
Reflection Coefficients.

9 Make sure that your desired destination model, doc_sq_example2, is the

current model. You can type gcs in the MATLAB Command Window to
display the name of your current model.

5-6

Scalar Quantizers

10 In the SQ Design Tool GUI, click the Design and Plot button to apply the
changes you made to the parameters.

The GUI should look similar to the following figure.

<) 50 Design Tool - [Untitled.sqd*] o] B
File Edit Insert Tools ‘Window Help
DedESR KOO NN A28 0K
Total nurber of iterations = 10
Training Set: IK 3 :
Performance curve (mean square error at each iteration)
—— Scalar quantizer 1o
o 1.6 T T T T T T T T
Source of inhial codebook: I.-’-‘«uto-generate - i | 1 1 | 1 H H H
MNumber of levels: 128 L It et Sl et et At et et N
=] H i i H i i H i
Initial cadeback: [Froais o ; ; ; ; boooeos boooeos boos R
= . | | H i i H i
5 f initial Bound itz I B ,i 3 b i i H i i H i
ource of initial boundary paints: tdid-points = 1 : : : : [[L [|
Imitial boundary points (unbounded): I[_D 3:015:11]] ! : ! ' ! ! ' !
e = ' \ I ' I I ' I
08 :. :. v : [[— [[-
—— Stopping criteria H H H H H 1 H 1
L 06 ; ; ; ; ; : ; :
Stapping criteria: I Fielative threshold d 1 2 3 4 5 £ 7 8] 10
Mumber of terations
Fielative threshald: I-I 7
b aimum iteration: I'IDDD Staircase character of the quantizer
— Algorthmic: details 0.8
Searching methods: I Binary search d 0.8
iEsinelig miles | Lawwer indexed codeword k2| 04
o ﬁ 0.2
_ hlodsl
- i o
Destination: ICunent rnodel 'i a
2 oz
Block type: I Bath v i £
= 04
Encoder block name: In Coefficients
06
Decoder block name: In Coefficients
Export Outputs | -0.8
[~ Dwvenarite target Block[z)
-0.8 -06 -0.4 -0z a oz 04 aeE 0.8
Generate Model | Firal Boundary Points (theoretical bounds are -inf & +nf)
I Fieady

5-7

5 Quantizers

11 Click the Generate Model button.

Two new blocks, SQ Encoder - Reflection Coefficients and SQ Decoder -
Reflection Coefficients, appear in your model file.

12 Click the SQ Design Tool GUI and, for the Training Set parameter, enter
E.

13 Repeat steps 5 to 11 for the variable E, which represents the residual signal
you want to quantize. In steps 6 and 7, name your blocks SQ Encoder -
Residual and SQ Decoder - Residual.

Once you have completed these steps, two new blocks, SQ Encoder -
Residual and SQ Decoder - Residual, appear in your model file.

14 Close the SQ Design Tool GUI. You do not need to save the SQ Design
Tool session.

You have now created a scalar quantizer encoder and a scalar quantizer
decoder for each signal you want to quantize. You are ready to quantize the
residual signal, E, and the reflection coefficients, K.

15 Save the model as doc_sq_example3. Your model should look similar to
the following figure.

ﬁ doc_sq_example3 ;IEI 5'
File Edit View Simulaton Format Tools Help
DSEHE| 4R 422 5ps |[hom B RE R B E

Resynthesized

5Q Encoder - S Decoder - "
Signal

Residual Residual

SQ Encoder 5Q Decoder
Analysis

SQDTool UA,_,—’_ | —1 _,_,—’_a(u)

,—',_ SQ Encoder - SQ Decoder -
| Audio playback in MATLAB® Reflection Coeflicients Reflection Cosfliciants

Scalar Quantizer

Signal To
Design ‘ Criginal ‘ ‘ Frocessed ‘ Workspace1

Signal Signal

Ready 100% [FixedStepDiscrete 4

5-8

Scalar Quantizers

16 Run your model.

17 Double-click the Original Signal and Processed Signal blocks, and listen
to both signals.

Again, there is no perceptible difference between the two. You can therefore
conclude that quantizing your residual and reflection coefficients did not
affect the ability of your system to accurately reproduce the input signal.

You have now quantized the residual and reflection coefficients. The bit rate
of a quantization system is calculated as (bits per frame)*(frame rate).

In this example, the bit rate is [(80 residual samples/frame)*(7 bits/sample) +
(12 reflection coefficient samples/frame)*(7 bits/sample)]*(100 frames/second),
or 64.4 kbits per second. This is higher than most modern speech coders,
which typically have a bit rate of 8 to 24 kbits per second. If you decrease the
number of bits allocated for the quantization of the reflection coefficients or
the residual signal, the overall bit rate would decrease. However, the speech
quality would also degrade.

For information about decreasing the bit rate without affecting speech quality,
see “Vector Quantizers” on page 5-10.

5 Quantizers

Vector Quantizers

5-10

In this section...

“Building Your Vector Quantizer Model” on page 5-10
“Configuring and Running Your Model” on page 5-11

Building Your Vector Quantizer Model

In the previous section, you created scalar quantizer encoders and decoders
and used them to quantize your residual signal and reflection coefficients.
The bit rate of your scalar quantization system was 64.4 kbits per second.
This bit rate is higher than most modern speech coders. To accommodate a
greater number of users in each channel, you need to lower this bit rate while
maintaining the quality of your speech signal. You can use vector quantizers,
which exploit the correlations between each sample of a signal, to accomplish
this task.

In this topic, you modify your scalar quantization model so that you are using
a split vector quantizer to quantize your reflection coefficients:

1 Open a model similar to the one you created in “Creating a Scalar
Quantizer” on page 5-5 by typing doc_vq_examplel at the MATLAB
command prompt. The example model doc_vq_examplel adds a new LSF
Vector Quantization subsystem to the doc_sq_example3 model. This
subsystem is preconfigured to work as a vector quantizer. You can use
this subsystem to encode and decode your reflection coefficients using the
split vector quantization method.

2 Delete the SQ Encoder — Reflection Coefficients and SQ Decoder —
Reflection Coefficients blocks.

3 From the Simulink Sinks library,click-and-drag a Terminator block into
your model.

4 From the Signal Processing Blockset Estimation > Linear Prediction
library, click-and-drag a LSF/LSP to LPC Conversion block and two LPC
to/from RC blocks into your model.

Vector Quantizers

5 Connect the blocks as shown in the following figure. You do not need to
connect Terminator blocks to the P ports of the LPC to/from RC blocks.
These ports disappear once you set block parameters.

[=]doc_va_example2 =lof x|
File Edit View Simulaton Format Tools Help
DSES| s BR[(E= D (2 b 5ps [Nom I HeERE hREE

Signal To
Workspace

S0 Encodar SQ Decoder
hammin; In Digital .
Digital acE Levinsor u J_,_,— ! _,_,_’7“ "™ Digital g, Digital
Fie /\ puein K Filier Filter
SQ Encoder - S0 Decoder - Re-synthesized
Sianal Rasidus| Residual Signal

MATLAB"

Analysis

SQDToal

RCta
,,_,7 qLSFgﬁ{LSF‘ AHK Fe el

LSFILSF to LFC LFC toffrom RC1
Conversion

Scalar Quantizer [ldxL SF Signal To.
Design Original [E— LFC toffrom RC . Workspace
Signal Signal LSF Vector
Quantization Terminator
Ready [100% [|FixedstepDiscrete y

You have modified your model to include a subsystem capable of vector
quantization. In the next topic, you reset your model parameters to quantize
your reflection coefficients using the split vector quantization method.

Configuring and Running Your Model

In the previous topic, you configured your scalar quantization model for vector
quantization by adding the LSF Vector Quantization subsystem. In this topic,
you set your block parameters and quantize your reflection coefficients using
the split vector quantization method.

1 If the model you created in “Building Your Vector Quantizer Model” on

page 5-10 is not open on your desktop, you can open an equivalent model by
typing doc_vq_example2 at the MATLAB command prompt.

5-11

5 Quantizers

2 Double-click the LSF Vector Quantization subsystem, and then double-click
the LSF Split VQ subsystem.

The subsystem opens, and you see the three Vector Quantizer Encoder
blocks used to implement the split vector quantization method.

E!doc_vq_exa mple2/LSF Vector Quantization /LSF Split VQ. =]]
File Edit View Simulaton Format Tools Help
D|SEHE| & BRG] 5o |om JHERE S hEE S
Split vector quantization of LSF
N =
To Select - -
Frame Rows w mm”’ > D:I DD
1o
V@ of LSF: 1st subvectar @ ’ g%vm >
qLSF
" oy
Con of
pjy V@ Emseder b-q-mx_\gmf.: Quentized LSFs Sort
[(wgtztod] > w : ljt if.l(u:
gea V@ of LSF: 2nd subvector
gtitog]
r<Lrat] D)
Rows [Wagtdtos] plu V@ | IdxL SF
Wito10 b [lax_lstrio1d
WotTta10] - :
[(Wat7e=A 0] W =7) Cencatenation
of LSF subvectors
VQ of LSF: 2rd subvector
Ready [100% [[|FixedStepDiscrete 4

This subsystem divides each vector of 10 line spectral frequencies (LSFs),
which represent your reflection coefficients, into three LSF subvectors.
Each of these subvectors is sent to a separate vector quantizer. This
method is called split vector quantization.

5-12

Vector Quantizers

3 Double-click the VQ of LSF: 1st subvector block.

The Block Parameters: VQ of LSF: 1st subvector dialog box opens.

E Function Block Parameters: ¥Yector Quantizer Encode x|

—Weckor Quantizer Encoder

For each inpuk column veckor, the block outputs & zero-based index walue of the nearest
codeword, You can choose to output the nearest codeword and corresponding
guantization error For each input column vector, Each column of the Codebook, parameter
represents a codeword, If vou choose ko specify a weighting Factor, it must be 5 wvector
hawing length egual ko the number of romws of your input, The block applies the same
codebook, and weighting Factor ko each input column wector,

All the inputs to the block must be the same data bvpe, The output indesx walues can be
signed or unsigned integers. All ather outputs have the same data bype as the inputs,

Iain Data Types I

—Parameters

Source of codebook: ISpeciFy via dialog LI

Codebook; | CB_lsf1to3_10bit

Distorkion measure; IWeighted squared error ;I
Source of weighting Fackar: IInput parkt LI
Tie-breaking rule: IChu:u:nse the lower index LI

¥ output codewaord

r Cutput quankization error

Index output data bype: |ink32 LI

J oK I Cancel Help | Apply |

The variable CB_1sf1to3_10bit is the codebook for the subvector that
contains the first three elements of the LSF vector. It is a 3-by-1024
matrix, where 3 is the number of elements in each codeword and 1024 is

the number of codewords in the codebook. Because 210 =1024 , 1t takes 10
bits to quantize this first subvector. Similarly, a 10-bit vector quantizer is
applied to the second and third subvectors, which contain elements 4 to 6

5-13

5 Quantizers

and 7 to 10 of the LSF vector, respectively. Therefore, it takes 30 bits to
quantize all three subvectors.

Note If you used the vector quantization method to quantize your
reflection coefficients, you would need 2,, or 1.0737e9 codebook values
to achieve the same degree of accuracy as the split vector quantization
method.

4 In your model file, double-click the Autocorrelation block and set the
Maximum non-negative lag (less than input length) parameter to
10. Click OK.

This parameter controls the number of linear polynomial coefficients
(LPCs) that are input to the split vector quantization method.

5 Double-click the LPC to/from RC block that is connected to the input of
the LSF Vector Quantization subsystem. Clear the Output normalized
prediction error power check box. Click OK.

6 Double-click the LSF/LSP to LPC Conversion block and set the Input
parameter to LSF in range (0 to pi). Click OK.

7 Double-click the LPC to/from RC block that is connected to the output
of the LSF/LSP to LPC Conversion block. Set the Type of conversion
parameter to LPC to RC, and clear the Output normalized prediction
error power check box. Click OK.

8 At the MATLAB command prompt, type load lpcvocoder.

The codebook values for your vector quantizer are loaded into memory. You
have now configured the parameters of your vector quantizer model and
are ready to quantize your reflection coefficients.

9 Run your model.

5-14

Vector Quantizers

=] doc_vq_example3 —lol x|
File Edit View Simulaton Format Tools Help

Signal To
Worspace

5Q Encoder 5Q Decoder
-1 hamming " Digital
Out —p U Tl (i P In
037 Digital A Leawinsar ! bl Digital
b0 22 = ACF L K Filter Out I
8 kH: o o Q 5Q Decod: R
: eEmphasis Gverl Window Autocomelstion Levinsan- Anslysis Filter SQ Encoder - Q Decoder - Time Varying DeEmphasis A
Signal lap Residual Residusl ‘Synthesis Filter
"MATLAB" Anszlysiz Durbin
Windows
Analysis Synthesis
Sa0Tool qLSF LS A e xl:;F;{u” K
RCto

Cenversion
Scalar Quantizer

LFC talfrom RC JaxLSF Signal To
Design Original Processed Worspace1
Signal Signal LSF Vector

Quantization Teminatar

Ready

100% |FixedsStepDiscrete v

10 Double-click the Original Signal and Processed Signal blocks to listen to
both the original and the processed signal.

There is no perceptible difference between the two. Quantizing your
reflection coefficients using a split vector quantization method produced
good quality speech without much distortion.

You have now used the split vector quantization method to quantize your
reflection coefficients. The vector quantizers in the LSF Vector Quantization
subsystem use 30 bits to quantize a frame containing 80 reflection coefficients.

The bit rate of a quantization system is calculated as (bits per frame)*(frame
rate).

In this example, the bit rate is [(80 residual samples/frame)*(7 bits/sample) +
(30 bits/frame)]*(100 frames/second), or 59 kbits per second. This is less than
64.4 kbits per second, the bit rate of the scalar quantization system. However,
the quality of the speech signal did not degrade. If you want to further reduce

the bit rate of your system, you can use the vector quantization method to
quantize the residual signal.

5-15

5 Quantizers

5-16

Statistics, Estimation, and
Linear Algebra

This chapter describes several standard operations involved in simulating
signal processing models.

e “Statistics” on page 6-2
e “Power Spectrum Estimation” on page 6-6

e “Linear Algebra” on page 6-7

6 Statistics, Estimation, and Linear Algebra

6-2

Statistics

In this section...

“Statistics Blocks” on page 6-2
“Basic Operations” on page 6-3

“Running Operations” on page 6-4

Statistics Blocks

The Statistics library provides fundamental statistical operations such as
minimum, maximum, mean, variance, and standard deviation. Most blocks in
the Statistics library support two types of operations; basic and running.

The blocks listed below toggle between basic and running modes using the
Running check box in the parameter dialog box:

* Histogram

® Mean

e RMS

Standard Deviation

e Variance

An unselected Running check box means that the block is operating in
basic mode, while a selected Running box means that the block is operating
in running mode.

The Maximum and Minimum blocks are slightly different from the blocks
above, and provide a Mode parameter in the block dialog box to select the
type of operation. The Value and Index, Value, and Index options in the
Mode menu all specify basic operation, in each case enabling a different set
of output ports on the block. The Running option in the Mode menu selects
running operation.

Statistics

Basic Operations

A basic operation is one that processes each input independently of previous
and subsequent inputs. For example, in basic mode (with Value and Index
selected, for example) the Maximum block finds the maximum value in each
column of the current input, and returns this result at the top output (val).
Each consecutive Val output therefore has the same number of columns as
the input, but only one row. Furthermore, the values in a given output only
depend on the values in the corresponding input. The block repeats this
operation for each successive input.

This type of operation is exactly equivalent to the MATLAB command

val = max(u) % Equivalent MATLAB code

which computes the maximum of each column in input u.

The next section is an example of a basic statistical operation.

Example: Sliding Windows

You can use the basic statistics operations in conjunction with the Buffer
block to implement basic sliding window statistics operations. A sliding
window is like a stencil that you move along a data stream, exposing only a
set number of data points at one time.

For example, you may want to process data in 128-sample frames, moving the
window along by one sample point for each operation. One way to implement
such a sliding window is shown in the model below.

1266 |— ol 128x1 } L | yout
Signal From Wean To Watspace
o thsp ace Buffer

The Buffer block’s Buffer size (M) parameter determines the size of the
window. The Buffer overlap (L) parameter defines the “slide factor” for
the window. At each sample instant, the window slides by M_-L points. The
Buffer overlap is often M -1 (the same as the Delay Line block), so that a
new statistic is computed for every new signal sample.

6-3

6 Statistics, Estimation, and Linear Algebra

6-4

To build the model, make the following settings:

¢ In the Signal From Workspace block, set:
= Signal = 1:256
= Sample time = 0.1
= Samples per frame = 1
® In the Buffer block, set:
= Output buffer size (per channel) = 128
= Buffer overlap = 127

Running Operations

A running operation is one that processes successive sample-based or
frame-based inputs, and computes a result that reflects both present and past
inputs. A reset port enables you to restart this tracking at any time. The
running statistic is computed for each input channel independently, so the
block’s output is the same size as the input.

For example, in running mode (Running selected from the Mode parameter)
the Maximum block outputs a record of the input’s maximum value over time.

Statistics

The figure below illustrates how a Maximum block in running mode operates
on a frame-based 3-by-2 (two-channel) matrix input, u. The running maximum
1s reset at =2 by an impulse to the block’s optional Rst port.

In Rst Output
[h]—| |— [h? [h]—| |— [hE
, [6 1
LU e B 0 First output — J& 3
||'|pL|T 39 & o
R £
2 4 =1 o 6 9
5 1 In 5 9
@ g6 . = &
;E 0a| 12 ; aceirnu i 56 — Reset
__g -1 5_ & 6
E

30 86
e =3 (] g6
L 17 817

6 Statistics, Estimation, and Linear Algebra

6-6

Power Spectrum Estimation

The Power Spectrum Estimation library provides a number of blocks for
spectral analysis. Many of them have correlates in Signal Processing Toolbox
software, which are shown in parentheses:

® Burg Method (pburg)

® Covariance Method (pcov)

Magnitude FFT (periodogram)

e Modified Covariance Method (pmcov)
e Short-Time FFT

® Yule-Walker Method (pyulear)

See “Spectral Analysis” in the Signal Processing Toolbox documentation for
an overview of spectral analysis theory and a discussion of the above methods.

Signal Processing Blockset software provides two demos that illustrate the
spectral analysis blocks:

® A Comparison of Spectral Analysis Techniques (dspsacomp)
® Spectral Analysis: Short-Time FFT (dspstfft)

Linear Algebra

Linear Algebra

In this section...

“Linear Algebra Blocks” on page 6-7
“Linear System Solvers” on page 6-7
“Matrix Factorizations” on page 6-9

“Matrix Inverses” on page 6-11

Linear Algebra Blocks

The Matrices and Linear Algebra library provides three large sublibraries
containing blocks for linear algebra; Linear System Solvers, Matrix
Factorizations, and Matrix Inverses. A fourth library, Matrix Operations,
provides other essential blocks for working with matrices. See Chapter 1,
“Working with Signals” for more information about matrix signals.

Linear System Solvers

The Linear System Solvers library provides the following blocks for solving
the system of linear equations AX = B:

Some of the blocks offer particular strengths for certain classes of problems.

Autocorrelation LPC
Cholesky Solver
Forward Substitution
LDL Solver
Levinson-Durbin

LU Solver

QR Solver

SVD Solver

For example, the Cholesky Solver block is particularly adapted for a square
Hermitian positive definite matrix A, whereas the Backward Substitution
block is particularly suited for an upper triangular matrix A.

6-7

6 Statistics, Estimation, and Linear Algebra

Example: LU Solver
In the model below, the LU Solver block solves the equation Ax =b, where

1 -2 3 1
A=|4 0 6| b=(-2
2 -1 3 -1

and finds x to be the vector [-2 0 1]".

To build the model, set the following parameters:

} 23

Constant . AX=B (LU} 3
Rl | =
I

[2x1] T [m x m]

Constanti

1
[U B
] 1

[v]
w2 oh w2

K

Y

® In the Constant block, set Constant value=[1 -2 3;4 0 6;2 -1 3].
® In the Constantl block, set Constant value=1[1 -2 -1]"'.

® In both Constant blocks, clear the Interpret vector parameters as
1-D check box.

¢ In both Constant blocks, set the Sampling mode to Sample based.
® In both Constant blocks, set the Sample time to 1.

You can verify the solution by using the Matrix Multiply block to perform the
multiplication Ax, as shown in the model below.

6-8

Linear Algebra

[_ T 3] P
2 2 : S
2 -1 3
- e Muttiply
—=

. 1 matriz Multiply —
[I:I } .:K..

Constant

Matrix Factorizations

The Matrix Factorizations library provides the following blocks for factoring
various kinds of matrices:

® Cholesky Factorization

¢ LDL Factorization

¢ LU Factorization

* QR Factorization

¢ Singular Value Decomposition

Some of the blocks offer particular strengths for certain classes of problems.
For example, the Cholesky Factorization block is particularly suited to
factoring a Hermitian positive definite matrix into triangular components,

whereas the QR Factorization is particularly suited to factoring a rectangular
matrix into unitary and upper triangular components.

Example: LU Factorization

In the model below, the LU Factorization block factors a matrix A into upper
and lower triangular submatrices U and L, where A is row equivalent to
input matrix A, where

6-9

6 Statistics, Estimation, and Linear Algebra

1-23
A=1408
2-113
S o af af 8
2 -z 37| ST S 7= | = [|
|:— o E];.l-.-— ¢N . [5] | 5] | 075
2 -1 o3 E ——
Sonstznt LU Factorization
. —
]

To build the model, in the DSP Constant block, set the Constant value
parameter to [1 -2 3;4 0 6;2 -1 3], clear the Interpret vector
parameters as 1-D check box, set theSampling mode to Sample based,
and set the Sample time to 1.

The lower output of the LU Factorization, P, is the permutation index
vector, which indicates that the factored matrix A is generated from A by
interchanging the first and second rows.

4 0 6
A,=|1 2 3
2 -1 3

The upper output of the LU Factorization, LU, is a composite matrix containing
the two submatrix factors, U and L, whose product LU is equal to Ap.

4 0 6 1 0 0
U=(0 -2 15 L=/025 1 0
0 0 -0.75 05 05 1

You can check that LU = A with the Matrix Multiply block, as shown in
the model below.

6-10

Linear Algebra

1
(=)
(=3
' k2
oo
(=)
ook o
(R =
—_
i
=
i

- | | al af g

Constant T hatrix [33] | il al 7]
> Multiply

[3%3] | | -1 H

.:K_'. T

} " Matrix Multiply —

1
(SR
1
(=3 S

1
)
I
1
oo i

Constant1

Matrix Inverses

The Matrix Inverses library provides the following blocks for inverting various
kinds of matrices:

® Cholesky Inverse

e LLDL Inverse

e LU Inverse

® Pseudoinverse

Example: LU Inverse

In the model below, the LU Inverse block computes the inverse of input
matrix A, where

1 -2 3
A=|4 0 6
2 -1 3

and then forms the product A’A, which yields the identity matrix of order 3,
as expected.

6-11

6 Statistics, Estimation, and Linear Algebra

[3=3) [3=3) =1

| —
EX ol
|
k2
wom o
| I
el
i 0
y
il
i
5
b
]
y
]

LU} | T |

1323 W atriz [3x3] o _
b I | 1

Multiply

latriz Multigly —E0E

To build the model, set the Constant block parameters as follows:

¢ Constant value=[1 -2 3;4 0 6;2 -1 3]

* Interpret vector parameters as 1-D = Clear this check box
¢ Sampling mode = Sample based

e Sample time = 1

As shown above, the computed inverse is

1 -05 2
Al=| o 0.5 -1
0.6667 0.5 -1.333

6-12

7

Working with Fixed-Point
Data

¢ “Fixed-Point Signal Processing Development” on page 7-2
® “Concepts and Terminology” on page 7-5

* “Arithmetic Operations” on page 7-11

® “Specifying Fixed-Point Attributes” on page 7-22

¢ “Fixed-Point Filtering” on page 7-45

7 Working with Fixed-Point Data

Fixed-Point Signal Processing Development

In this section...

“Fixed-Point Features” on page 7-2
“Benefits of Fixed-Point Hardware” on page 7-2

“Benefits of Fixed-Point Design with Signal Processing Blockset Software”
on page 7-3

“Fixed-Point Signal Processing Applications” on page 7-4

Note To take full advantage of fixed-point support in Signal Processing
Blockset software, you must install Simulink® Fixed Point™ software.

Fixed-Point Features

Many of the blocks in Signal Processing Blockset software have fixed-point
support, so you can design signal processing systems that use fixed-point
arithmetic. Fixed-point support in Signal Processing Blockset software
includes

® Signed two’s complement and unsigned fixed-point data types
® Word lengths from 2 to 128 bits in simulation

® Word lengths from 2 to the size of a 1ong on the Real-Time Workshop C
code-generation target

¢ Overflow handling and rounding methods

® (code generation for deployment on a fixed-point embedded processor,
with Real-Time Workshop code generation software. The generated
code uses all allowed data types supported by the embedded target, and
automatically includes all necessary shift and scaling operations

Benefits of Fixed-Point Hardware

There are both benefits and trade-offs to using fixed-point hardware rather
than floating-point hardware for signal processing development. Many signal
processing applications require low-power and cost-effective circuitry, which

Fixed-Point Signal Processing Development

makes fixed-point hardware a natural choice. Fixed-point hardware tends to
be simpler and smaller. As a result, these units require less power and cost
less to produce than floating-point circuitry.

Floating-point hardware is usually larger because it demands functionality
and ease of development. Floating-point hardware can accurately represent
real-world numbers, and its large dynamic range reduces the risk of overflow,
quantization errors, and the need for scaling. In contrast, the smaller dynamic
range of fixed-point hardware that allows for low-power, inexpensive units
brings the possibility of these problems. Therefore, fixed-point development
must minimize the negative effects of these factors, while exploiting the
benefits of fixed-point hardware; cost- and size-effective units, less power and
memory usage, and fast real-time processing.

Benefits of Fixed-Point Design with Signal Processing
Blockset Software

Simulating your fixed-point development choices before implementing them
in hardware saves time and money. The built-in fixed-point operations
provided by Signal Processing Blockset software save time in simulation and
allow you to generate code automatically.

Signal Processing Blockset software allows you to easily run multiple
simulations with different word length, scaling, overflow handling, and
rounding method choices to see the consequences of various fixed-point
designs before committing to hardware. The traditional risks of fixed-point
development, such as quantization errors and overflow, can be simulated and
mitigated in software before going to hardware.

Fixed-point C code generation with Signal Processing Blockset software

and Real-Time Workshop code generation software produces code ready for
execution on a fixed-point processor. All the choices you make in simulation
with Signal Processing Blockset software in terms of scaling, overflow
handling, and rounding methods are automatically optimized in the generated
code, without necessitating time-consuming and costly hand-optimized code.
For more information on generating fixed-point code, see Code Generation in
the Simulink Fixed Point User’s Guide.

7-3

7 Working with Fixed-Point Data

Fixed-Point Signal Processing Applications
Fixed-point support in Signal Processing Blockset software facilitates

development of a wide variety of signal processing applications:
* Wireless and broadband communications
= Cellular phones
= Radio
= Satellite communications
® Speech and audio processing
= Speech processing
= High-end audio processing
e Telephony
= Speech coding
= Dual tone multifrequency (DTMF)
= Echo cancellation
¢ Hand-held and battery-operated consumer electronics
= Digital recording devices
= Personal digital assistants (PDAs)
e Computer peripherals
® Radar and sonar

e Medical electronics

Concepts and Terminology

Concepts and Terminology

In this section...

“Fixed-Point Data Types” on page 7-5
“Scaling” on page 7-6

“Precision and Range” on page 7-7

Note The “Glossary” defines much of the vocabulary used in these sections.
For more information on these subjects, see the Simulink Fixed Point
documentation.

Fixed-Point Data Types

In digital hardware, numbers are stored in binary words. A binary word is
a fixed-length sequence of bits (1’s and 0’s). How hardware components or
software functions interpret this sequence of 1’s and 0’s is defined by the
data type.

Binary numbers are represented as either fixed-point or floating-point data
types. In this section, we discuss many terms and concepts relating to
fixed-point numbers, data types, and mathematics.

A fixed-point data type is characterized by the word length in bits, the position
of the binary point, and whether it is signed or unsigned. The position of

the binary point is the means by which fixed-point values are scaled and
interpreted.

For example, a binary representation of a generalized fixed-point number
(either signed or unsigned) is shown below:

byi-1 byi-2 bs | by | b3 | ba | b1 | by
MSB LSB

binary point

7-5

7 Working with Fixed-Point Data

where

* b, is the i® binary digit.

® wlis the word length in bits.

® b, , is the location of the most significant, or highest, bit (MSB).
® b,is the location of the least significant, or lowest, bit (LSB).

¢ The binary point is shown four places to the left of the LSB. In this
example, therefore, the number is said to have four fractional bits, or a
fraction length of four.

Fixed-point data types can be either signed or unsigned. Signed binary
fixed-point numbers are typically represented in one of three ways:

® Sign/magnitude

® One’s complement

® Two’s complement

Two’s complement is the most common representation of signed fixed-point

numbers and is used by Signal Processing Blockset software. See “Two’s
Complement” on page 7-12 for more information.

Scaling

Fixed-point numbers can be encoded according to the scheme
real-world value = (slope x integer) + bias
where the slope can be expressed as

slope = slope adjustment x 26°P0ent

The integer is sometimes called the stored integer. This is the raw binary
number, in which the binary point assumed to be at the far right of the word.
In Signal Processing Blockset software, the negative of the exponent is often
referred to as the fraction length.

7-6

Concepts and Terminology

The slope and bias together represent the scaling of the fixed-point number.
In a number with zero bias, only the slope affects the scaling. A fixed-point
number that is only scaled by binary point position is equivalent to a number
in the Simulink Fixed Point [Slope Bias] representation that has a bias equal
to zero and a slope adjustment equal to one. This is referred to as binary
point-only scaling or power-of-two scaling:

Qexponent

real-world value = xXinteger

or

9= fraction length

real-world value = X integer

In Signal Processing Blockset software, you can define a fixed-point data type
and scaling for the output or the parameters of many blocks by specifying
the word length and fraction length of the quantity. The word length and
fraction length define the whole of the data type and scaling information

for binary-point only signals.

All Signal Processing Blockset blocks that support fixed-point data types
support signals with binary-point only scaling. Many fixed-point Signal
Processing Blockset blocks that do not perform arithmetic operations but
merely rearrange data, such as Delay and Matrix Transpose, also support
signals with [Slope Bias] scaling.

Precision and Range
You must pay attention to the precision and range of the fixed-point data

types and scalings you choose for the blocks in your simulations, in order to
know whether rounding methods will be invoked or if overflows will occur.

Range

The range is the span of numbers that a fixed-point data type and scaling
can represent. The range of representable numbers for a two’s complement
fixed-point number of word length wl, scaling S, and bias B is illustrated
below:

7-7

7 Working with Fixed-Point Data

7-8

S-(-2“)+B B S-(2¢1-1)+B

| | |
I i I N I
negative numbers positive numbers

For both signed and unsigned fixed-point numbers of any data type, the
number of different bit patterns is 2wl.

For example, in two’s complement, negative numbers must be represented

as well as zero, so the maximum value is 2wl~!. Because there is only one
representation for zero, there are an unequal number of positive and negative
numbers. This means there is a representation for -2w/~! but not for 2wl ~:

For slope = 1 and bias = 0:
_21,01*1 O 2wl71 _ 1

negative numbers positive numbers

Overflow Handling. Because a fixed-point data type represents numbers
within a finite range, overflows can occur if the result of an operation is larger
or smaller than the numbers in that range.

Signal Processing Blockset software does not allow you to add guard bits to
a data type on-the-fly in order to avoid overflows. Any guard bits must be
allocated upon model initialization. However, Signal Processing Blockset
software does allow you to either saturate or wrap overflows. Saturation
represents positive overflows as the largest positive number in the range
being used, and negative overflows as the largest negative number in the
range being used. Wrapping uses modulo arithmetic to cast an overflow back
into the representable range of the data type. See “Modulo Arithmetic” on
page 7-11 for more information.

Precision

The precision of a fixed-point number is the difference between successive
values representable by its data type and scaling, which is equal to the value
of its least significant bit. The value of the least significant bit, and therefore

Concepts and Terminology

the precision of the number, is determined by the number of fractional bits.
A fixed-point value can be represented to within half of the precision of its
data type and scaling.

For example, a fixed-point representation with four bits to the right of the
binary point has a precision of 24 or 0.0625, which is the value of its least
significant bit. Any number within the range of this data type and scaling can
be represented to within (24)/2 or 0.03125, which is half the precision. This is
an example of representing a number with finite precision.

Rounding Modes. When you represent numbers with finite precision, not
every number in the available range can be represented exactly. If a number
cannot be represented exactly by the specified data type and scaling, it is
rounded to a representable number. Although precision is always lost in the
rounding operation, the cost of the operation and the amount of bias that is
introduced depends on the rounding mode itself. To provide you with greater
flexibility in the trade-off between cost and bias, Signal Processing Blockset
software currently supports the following rounding modes:

® Ceiling rounds the result of a calculation to the closest representable
number in the direction of positive infinity.

® Convergent rounds the result of a calculation to the closest representable
number. In the case of a tie, Convergent rounds to the nearest even
number. This is the least biased rounding mode provided by the blockset.

® Floor, which is equivalent to truncation, rounds the result of a calculation
to the closest representable number in the direction of negative infinity.

® Nearest rounds the result of a calculation to the closest representable
number. In the case of a tie, Nearest rounds to the closest representable
number in the direction of positive infinity.

® Round rounds the result of a calculation to the closest representable
number. In the case of a tie, Round rounds positive numbers to the closest
representable number in the direction of positive infinity, and rounds
negative numbers to the closest representable number in the direction
of negative infinity.

e Simplest rounds the result of a calculation using the rounding mode
(Floor or Zero) that adds the least amount of extra rounding code to your

7-9

7 Working with Fixed-Point Data

7-10

generated code. For more information, see “Rounding Mode: Simplest” in
the Simulink Fixed Point documentation.

® Zero rounds the result of a calculation to the closest representable number

in the direction of zero.

To learn more about each of these rounding modes, see “Rounding” in the
Simulink Fixed Point documentation.

For a direct comparison of the rounding modes, see “Choosing a Rounding
Method” in the Fixed-Point Toolbox™ documentation.

Arithmetic Operations

Arithmetic Operations

In this section...

“Modulo Arithmetic” on page 7-11
“Two’s Complement” on page 7-12
“Addition and Subtraction” on page 7-13
“Multiplication” on page 7-14

“Casts” on page 7-17

Note These sections will help you understand what data type and scaling
choices result in overflows or a loss of precision.

Modulo Arithmetic

Binary math is based on modulo arithmetic. Modulo arithmetic uses only
a finite set of numbers, wrapping the results of any calculations that fall
outside the given set back into the set.

7-11

7 Working with Fixed-Point Data

For example, the common everyday clock uses modulo 12 arithmetic. Numbers
in this system can only be 1 through 12. Therefore, in the “clock” system, 9
plus 9 equals 6. This can be more easily visualized as a number circle:

9.. ... plus 9 more ...

... equals 6.

Similarly, binary math can only use the numbers 0 and 1, and any arithmetic
results that fall outside this range are wrapped “around the circle” to either O
or 1.

Two’s Complement

Two’s complement is a way to interpret a binary number. In two’s
complement, positive numbers always start with a 0 and negative numbers
always start with a 1. If the leading bit of a two’s complement number is 0,
the value is obtained by calculating the standard binary value of the number.
If the leading bit of a two’s complement number is 1, the value is obtained by
assuming that the leftmost bit is negative, and then calculating the binary
value of the number. For example,

01=0+2%=1
11=((2H+ @) =(2+1) =-1

7-12

Arithmetic Operations

To compute the negative of a binary number using two’s complement,

1 Take the one’s complement, or “flip the bits.”
2 Add a 1 using binary math.

3 Discard any bits carried beyond the original word length.

For example, consider taking the negative of 11010 (-6). First, take the one’s
complement of the number, or flip the bits:

11010 — 00101

Next, add a 1, wrapping all numbers to 0 or 1:

00101
+1
00110 (6)

Addition and Subtraction

The addition of fixed-point numbers requires that the binary points of the
addends be aligned. The addition is then performed using binary arithmetic
so that no number other than 0 or 1 is used.

For example, consider the addition of 010010.1 (18.5) with 0110.110 (6.75):

010010.1 (18.5)
+0110.110 (6.75)
011001.010 (25.25)

Fixed-point subtraction is equivalent to adding while using the two’s
complement value for any negative values. In subtraction, the addends
must be sign extended to match each other’s length. For example, consider
subtracting 0110.110 (6.75) from 010010.1 (18.5):

7-13

7 Working with Fixed-Point Data

7-14

010010.100 (18.5) _— 010010.100 (18.5)
- 0110.110 (8.75) fwos compEmER! L 111001.010 (-B.75)

andsign exkrsion e 7170 (11.75)

Carry bitis
dicardead.

Most fixed-point Signal Processing Blockset blocks that perform addition cast
the adder inputs to an accumulator data type before performing the addition.
Therefore, no further shifting is necessary during the addition to line up the
binary points. See “Casts” on page 7-17 for more information.

Multiplication

The multiplication of two’s complement fixed-point numbers is directly
analogous to regular decimal multiplication, with the exception that the
intermediate results must be sign extended so that their left sides align
before you add them together.

For example, consider the multiplication of 10.11 (-1.25) with 011 (3):
10,11 (-1.25)

The extra 1 011 ¢3)
is the resulfnf-xlj_[ﬂl
NECEssary sign

exfensian. 1011

1100.01 (-3.75)

\

The number of fractianal bits of the
iesult & the sum of the number of
fractional bits of the factars.

Multiplication Data Types

The following diagrams show the data types used for fixed-point multiplication
in Signal Processing Blockset software. The diagrams illustrate the
differences between the data types used for real-real, complex-real, and
complex-complex multiplication. See individual reference pages in the

Block Reference to determine whether a particular block accepts complex
fixed-point inputs.

Arithmetic Operations

In most cases, you can set the data types used during multiplication in

the block mask. See Accumulator Parameters, Intermediate Product
ParametersProduct Output Parameters, and Output Parameters. These data
types are defined in “Casts” on page 7-17.

Note The following diagrams show the use of fixed-point data types in
multiplication in Signal Processing Blockset software. They do not represent
actual subsystems used by Signal Processing Blockset software to perform
multiplication.

Real-Real Multiplication. The following diagram shows the data types
used in the multiplication of two real numbers in Signal Processing Blockset
software. The software returns the output of this operation in the product
output data type, as the next figure shows.

Lr;pt:tt: pe Product output
o | datatype
MULTIPLIER o »
Input ¢ -
data type

Real-Complex Multiplication. The following diagram shows the data types
used in the multiplication of a real and a complex fixed-point number in Signal
Processing Blockset software. Real-complex and complex-real multiplication
are equivalent. The software returns the output of this operation in the
product output data type, as the next figure shows.

7-15

7 Working with Fixed-Point Data

7-16

Input a
data type 3
*| MULTIPLIER ’—““ Product
=" output
dat
o t',rpet Re—_ | actad
I
Input ¢+di >|Im
data type
o

MULTIPLIER

Complex-Complex Multiplication. The following diagram shows the
multiplication of two complex fixed-point numbers in Signal Processing
Blockset software. Note that the software returns the output of this operation
in the accumulator output data type, as the next figure shows.

Product
output
Input data type
a+bi a fac-bd)
data type Re a, +
e :’: b | MuLTIPLIER |2 (adehe)i
Im ¢ CAST |1, ac-bd
SUBTRACTOR
b, CAST J§
"| MULTIPLIER L[
d bd Accumulator Re~_| 1)
data type Im ="
a_ ad
MULTIPLIER [[o
d ADDER
Input ad+he
c+df b . CAST
data type |~ Re)| MULTIPLIER 152
e
" —1Im
Product
output
data type

Arithmetic Operations

Signal Processing Blockset blocks cast to the accumulator data type before
performing addition or subtraction operations. In the preceding diagram, this
1s equivalent to the C code

acc=ac;
acc-=bd;

for the subtractor, and

acc=ad;
acc+=bc;

for the adder, where acc is the accumulator.

Casts

Many fixed-point Signal Processing Blockset blocks that perform arithmetic
operations allow you to specify the accumulator, intermediate product, and
product output data types, as applicable, as well as the output data type of the
block. This section gives an overview of the casts to these data types, so that
you can tell if the data types you select will invoke sign extension, padding
with zeros, rounding, and/or overflow.

Casts to the Accumulator Data Type

For most fixed-point Signal Processing Blockset blocks that perform addition
or subtraction, the operands are first cast to an accumulator data type. Most
of the time, you can specify the accumulator data type on the block mask.
See Accumulator Parameters. Since the addends are both cast to the same
accumulator data type before they are added together, no extra shift is
necessary to insure that their binary points align. The result of the addition
remains in the accumulator data type, with the possibility of overflow.

Casts to the Intermediate Product or Product Output Data Type

For Signal Processing Blockset blocks that perform multiplication, the output
of the multiplier is placed into a product output data type. Blocks that then
feed the product output back into the multiplier might first cast it to an
intermediate product data type. Most of the time, you can specify these data
types on the block mask. See Intermediate Product Parameters and Product
Output Parameters.

7-17

7 Working with Fixed-Point Data

7-18

Casts to the Output Data Type

Many fixed-point Signal Processing Blockset blocks allow you to specify

the data type and scaling of the block output on the mask. Remember that
Signal Processing Blockset software does not allow mixed types on the input
and output ports of its blocks. Therefore, if you would like to specify a
fixed-point output data type and scaling for a Signal Processing Blockset block
that supports fixed-point data types, you must feed the input port of that
block with a fixed-point signal. The final cast made by a fixed-point Signal
Processing Blockset block is to the output data type of the block.

Note that although you can not mix fixed-point and floating-point signals on
the input and output ports of Signal Processing Blockset blocks, you can have
fixed-point signals with different word and fraction lengths on the ports of
blocks that support fixed-point signals.

Casting Examples

It is important to keep in mind the ramifications of each cast when selecting
these intermediate data types, as well as any other intermediate fixed-point
data types that are allowed by a particular block. Depending upon the data
types you select, overflow and/or rounding might occur. The following two
examples demonstrate cases where overflow and rounding can occur.

Arithmetic Operations

Casting from a Shorter Data Type to a Longer Data Type. Consider
the cast of a nonzero number, represented by a four-bit data type with two
fractional bits, to an eight-bit data type with seven fractional bits:

C T T

source The source bits must be shifted up to match the
binary point position of the destination data type.

L o 1 1 [[[[|

destination

Tt
e Ny

This bit from the source data

type “falls off” the high end with
the shift up. Overflow might occur.
The result will saturate or wrap.

These bits of the destination
data type are padded with
O'sor1’s.

As the diagram shows, the source bits are shifted up so that the binary point
matches the destination binary point position. The highest source bit does
not fit, so overflow might occur and the result can saturate or wrap. The
empty bits at the low end of the destination data type are padded with either
0’s or 1’s:
e If overflow does not occur, the empty bits are padded with 0’s.
¢ If wrapping occurs, the empty bits are padded with 0’s.
e [If saturation occurs,

= The empty bits of a positive number are padded with 1’s.

= The empty bits of a negative number are padded with 0’s.
You can see that even with a cast from a shorter data type to a longer data
type, overflow might still occur. This can happen when the integer length of

the source data type (in this case two) is longer than the integer length of
the destination data type (in this case one). Similarly, rounding might be

7-19

7 Working with Fixed-Point Data

7-20

necessary even when casting from a shorter data type to a longer data type, if
the destination data type and scaling has fewer fractional bits than the source.

Casting from a Longer Data Type to a Shorter Data Type. Consider the
cast of a nonzero number, represented by an eight-bit data type with seven
fractional bits, to a four-bit data type with two fractional bits:

L o 1 1 T [[[|

source The source bits must be shifted down to match the
binary point position of the destination data type.

C T T 1

destination
| | r— T T 7T T —1
. l L L1111 _1
These bits from the source
_ o do not fit into the destination
There is no value for this bit data type. The result is rounded.
from the source, so the result

must be sign-extended to fill
the destination data type.

As the diagram shows, the source bits are shifted down so that the binary
point matches the destination binary point position. There is no value for the
highest bit from the source, so the result is sign extended to fill the integer
portion of the destination data type. The bottom five bits of the source do not
fit into the fraction length of the destination. Therefore, precision can be
lost as the result is rounded.

In this case, even though the cast is from a longer data type to a shorter
data type, all the integer bits are maintained. Conversely, full precision can
be maintained even if you cast to a shorter data type, as long as the fraction
length of the destination data type is the same length or longer than the
fraction length of the source data type. In that case, however, bits are lost
from the high end of the result and overflow might occur.

Arithmetic Operations

The worst case occurs when both the integer length and the fraction length of
the destination data type are shorter than those of the source data type and
scaling. In that case, both overflow and a loss of precision can occur.

7-21

7 Working with Fixed-Point Data

7-22

Specifying Fixed-Point Attributes

In this section...

“Fixed-Point Block Parameters” on page 7-22
“Specifying System-Level Settings” on page 7-25
“Inherit via Internal Rule” on page 7-26

“Example: Selecting and Specifying Data Types for Fixed-Point Blocks”
on page 7-37

Fixed-Point Block Parameters

Signal Processing Blockset blocks that have fixed-point support usually allow
you to specify fixed-point characteristics through block parameters. By
specifying data type and scaling information for these fixed-point parameters,
you can simulate your target hardware more closely.

Note Floating-point inheritance takes precedence over the settings discussed
in this section. When the block has floating-point input, all block data types
match the input.

You can find most fixed-point parameters on the Data Types pane of Signal
Processing Blockset blocks. The following figure shows a typical Data Types
pane.

Specifying Fixed-Point Attributes

Main Daka Types |

Fixed-point operational parameters

Rounding mode: IFI::u:-r

;I Overflow mode: |wWrap LI

Flaating-paint inheritance takes precedence aver the settings in the 'Daka Tvpe' column below. When the Block inpuk
iz floating paoint, all block data tyvpes match the inpuk,

Daka Type Assiskant Minirnurn Mazxirnrn
Product outpuk: I Inherit: Inherit wia internal rle LI =
Accurmulator: I Inhertit: Inherit wia inkernal rule LI 3
Cukpuk: I Inberit: Same as First input LI == I[] I[]

[Lock data tvpe settings against changes by the Fixed-point kaals

All Signal Processing Blockset blocks with fixed-point capabilities share a set
of common parameters, but each block can have a different subset of these
fixed-point parameters. The following table provides an overview of the most
common fixed-point block parameters.

Fixed-Point Data
Type Parameter

Description

Rounding Mode

Specifies the rounding mode for the block to use when
the specified data type and scaling cannot exactly
represent the result of a fixed-point calculation.

See “Rounding Modes” on page 7-9 for more
information on the available options.

Overflow Mode

Specifies the overflow mode to use when the result
of a fixed-point calculation does not fit into the
representable range of the specified data type.

See “Overflow Handling” on page 7-8 for more
information on the available options.

7-23

7 Working with Fixed-Point Data

7-24

Fixed-Point Data
Type Parameter

Description

Intermediate
Product

Specifies the data type and scaling of the intermediate
product for fixed-point Signal Processing Blockset
blocks. Blocks that feed multiplication results back
to the input of the multiplier use the intermediate
product data type.

See the reference page of a specific block in the Block
Reference to learn about the intermediate product
data type for that block.

Product Output

Specifies the data type and scaling of the product
output for fixed-point Signal Processing Blockset
blocks that must compute multiplication results.

See the reference page of a specific block in the Block
Reference to learn about the product output data type
for that block. For or complex-complex multiplication,
the multiplication result is in the accumulator data
type. See “Multiplication Data Types” on page

7-14 for more information on complex fixed-point
multiplication in Signal Processing Blockset software.

Accumulator

Specifies the data type and scaling of the accumulator
(sum) for fixed-point Signal Processing Blockset
blocks that must hold summation results for further
calculation. Most such blocks cast to the accumulator
data type before performing the add operations
(summation).

See the reference page of a specific block in the Block
Reference for details on the accumulator data type of
that block.

Output

Specifies the output data type and scaling for Signal
Processing Blockset blocks.

Specifying Fixed-Point Attributes

Using the Data Type Assistant

The Data Type Assistant is an interactive graphical tool available on the
Data Types pane of some fixed-point Signal Processing Blockset blocks.

To learn more about using the Data Type Assistant to help you specify
block data type parameters, see the following section of the Simulink
documentation:

“Using the Data Type Assistant”

Checking Signal Ranges

Some fixed-point Signal Processing Blockset blocks have Minimum and
Maximum parameters on the Data Types pane. When a fixed-point data
type has these parameters, you can use them to specify appropriate minimum
and maximum values for range checking purposes.

To learn how to specify signal ranges and enable signal range checking, see
“Checking Signal Ranges” in the Simulink documentation.

Specifying System-Level Settings
You can monitor and control fixed-point settings for Signal Processing

Blockset blocks at a system or subsystem level with the Fixed-Point Tool. For
additional information on these subjects, see

e The fxptdlg reference page — A reference page on the Fixed-Point Tool in
the Simulink documentation

¢ “Fixed-Point Tool” — A tutorial that highlights the use of the Fixed-Point
Tool in the Simulink Fixed Point software documentation

Logging

The Fixed-Point Tool logs overflows, saturations, and simulation minimums
and maximums for fixed-point Signal Processing Blockset blocks. The
Fixed-Point Tool does not log overflows and saturations when the Data
overflow line in the Diagnostics > Data Integrity pane of the Configuration
Parameters dialog box is set to None.

7-25

7 Working with Fixed-Point Data

7-26

Autoscaling

You can use the Fixed-Point Tool autoscaling feature to set the scaling for
Signal Processing Blockset fixed-point data types.

Data type override

Signal Processing Blockset blocks obey the Use local settings, True
doubles, True singles, and Force off modes of the Data type override
parameter in the Fixed-Point Tool. The Scaled doubles mode is also
supported for Signal Processing Blockset source and byte-shuffling blocks,
and for some arithmetic blocks such as Difference and Normalization.

Inherit via Internal Rule

Selecting appropriate word lengths and scalings for the fixed-point parameters
in your model can be challenging. To aid you, an Inherit via internal
rule choice is often available for fixed-point block data type parameters,
such as the Accumulator and Product output signals. The following
sections describe how the word and fraction lengths are selected for you when
you choose Inherit via internal rule for a fixed-point block data type
parameter in Signal Processing Blockset software:

® “Internal Rule for Accumulator Data Types” on page 7-26
® “Internal Rule for Product Data Types” on page 7-27

® “Internal Rule for Output Data Types” on page 7-28

¢ “The Effect of the Hardware Implementation Pane on the Internal Rule”
on page 7-28

® “Internal Rule Examples” on page 7-30

Note In the equations in the following sections, WL = word length and FL =
fraction length.

Internal Rule for Accumulator Data Types

The internal rule for accumulator data types first calculates the ideal,
full-precision result. Where N is the number of addends:

Specifying Fixed-Point Attributes

WLideal accumulator = WLinput to accumulator ﬂoor(10g2 (N-D)+1

F. Lideal accumulator = F. Linput to accumulator

For example, consider summing all the elements of a vector of length 6 and
data type sfix10_En8. The ideal, full-precision result has a word length of
13 and a fraction length of 8.

The accumulator can be real or complex. The preceding equations are used for
both the real and imaginary parts of the accumulator. For any calculation,
after the full-precision result is calculated, the final word and fraction lengths
set by the internal rule are affected by your particular hardware. See “The
Effect of the Hardware Implementation Pane on the Internal Rule” on page
7-28 for more information.

Internal Rule for Product Data Types

The internal rule for product data types first calculates the ideal, full-precision
result:

WLideal product — WLinput 1t WLinput 2
FLideal product = FLinput 1t FLinput2

For example, multiplying together the elements of a real vector of length 2
and data type sfix10_En8. The ideal, full-precision result has a word length of
20 and a fraction length of 16.

For real-complex multiplication, the ideal word length and fraction length is
used for both the complex and real portion of the result. For complex-complex
multiplication, the ideal word length and fraction length is used for the partial
products, and the internal rule for accumulator data types described above

is used for the final sums. For any calculation, after the full-precision result
is calculated, the final word and fraction lengths set by the internal rule

are affected by your particular hardware. See “The Effect of the Hardware
Implementation Pane on the Internal Rule” on page 7-28 for more information.

7-27

7 Working with Fixed-Point Data

7-28

Internal Rule for Output Data Types

A few Signal Processing Blockset blocks have an Inherit via internal
rule choice available for the block output. The internal rule used in these
cases is block-specific, and the equations are listed in the block reference
page. For examples, refer to the FFT, IFFT, DCT, and IDCT reference pages.

As with accumulator and product data types, the final output word and
fraction lengths set by the internal rule are affected by your particular
hardware, as described in “The Effect of the Hardware Implementation Pane
on the Internal Rule” on page 7-28.

The Effect of the Hardware Implementation Pane on the
Internal Rule

The internal rule selects word lengths and fraction lengths that are
appropriate for your hardware. To get the best results using the internal
rule, you must specify the type of hardware you are using on the Hardware
Implementation pane of the Configuration Parameters dialog box. You can
open this dialog box from the Simulation menu in your model.

Specifying Fixed-Point Attributes

#, Configuration Parameters: untitled/Configuration {Active)

Select:

— Embedded hardware [zimulation and code generation]

- S olyver

- Diata lmnport/E xport
- Cptimization

[=- Diagnostics

Sample Time

o Data Validity
Type Conversion
i Connectivity

- Model Referencing
=~ Real-Time ‘Workshop
- Comments
- Symbols
- Custom Code
- Debug

- |nterface
[=-HDL Coder
- Global Sethings
- Test Bench
- ED Tool Scrpts

2 H ardware [mplementation

Device vendar: IGeneriu:

Device lype: IU nzpecified [azsume 32-bit Generic)

char: IB
long: |32

Murnber of bits:

zhort:

—

native word size:

Byte ardering: IUnspecified j
Signed integer division rounds to; IUndefined j
[V | Shitt right om & signedinteger az arithmetic shift
— Emulation hardware [code generation anly)
v Mone
0k I Cancel Help Apply

ASIC/FPGA. On an ASIC/FPGA target, the ideal, full-precision word length
and fraction length calculated by the internal rule are used. If the calculated
ideal word length is larger than the largest allowed word length, you receive
an error. The largest word length allowed for Simulink and Signal Processing

Blockset software is 128 bits.

Other targets. For all targets other than ASIC/FPGA, the ideal,

full-precision word length calculated by the internal rule is rounded up to the
next available word length of the target. The calculated ideal fraction length

is used, keeping the least-significant bits.

7-29

7 Working with Fixed-Point Data

If the calculated ideal word length for a product data type is larger than the
largest word length on the target, you receive an error. If the calculated ideal
word length for an accumulator or output data type is larger than the largest
word length on the target, the largest target word length is used.

Internal Rule Examples

The following sections show examples of how the internal rule interacts with
the Hardware Implementation pane to calculate accumulator data types
and product data types.

Accumulator Data Types. Consider the following model
doc_internalRule_accumExp.

E.!doc_internalﬂule_accumExp - |EI|5|

File Edit Wiew Simulaton Format Tools Help

D& &t BER (e 4= p [0 | [Nomal | 3 &

Diff sfit10_End) {::

Owt1

¥

2.5 sfid_End
1.25

Constant Difference

i =foe?T_End) B

.5 =foeiE_End
1.25
Out2

Constanti Differences1

¥

h

i =fe?Z5_End) m

2.5 =fie127_End
1.25
Outa

Constant2 Differencel

Ready [100%% [[|ode4s v

In the Difference blocks, the Accumulator parameter is set to Inherit:
Inherit via internal rule, and the Output parameter is set to Inherit:

7-30

Specifying Fixed-Point Attributes

Same as accumulator. Therefore, you can see the accumulator data type
calculated by the internal rule on the output signal in the model.

In the preceding model, the Device type parameter in the Hardware
Implementation pane of the Configuration Parameters dialog box is set to
ASIC/FPGA. Therefore, the accumulator data type used by the internal rule is
the ideal, full-precision result.

Calculate the full-precision word length for each of the Difference blocks in
the model:
WL, 4eal accumulator = WLinput to accumulator + floor(loge (number of accumulations)) +1

WLideal accumulator =9+ ﬂOOI‘(lng(].)) +1
WLideal accumulator = 9+0+1=10

WLideal accumulatorl = WLinput to accumulatorl + ﬂoor(logz (number of accumulations)) +1

WLideal accumulatorl = 16+ ﬂoor(10g2 +1
WLideal accumulatorl = 16+0+1=17

WL;geal accumulator2 = WLinput to accumulator2 T+ floor(logg (number of accumulations)) +1

WLideal accumulator2 =127+ ﬂoor(lOgZ(l)) +1
WLideal accumulator2 =127+0+1=128

Calculate the full-precision fraction length, which is the same for each Matrix
Sum block in this example:

FL,

ideal accumulator

FL,

ideal accumulator

=FL,

input to accumulator
=4

Now change the Device type parameter in the Hardware Implementation
pane of the Configuration Parameters dialog box to 32 bit Embedded
Processor, as shown in the following figure.

7-31

7 Working with Fixed-Point Data

7-32

Select:

- S olyver

- Diata lmnport/E xport

- Cptimization

[=- Diagnostics

Sample Time

o Data Validity

Type Conversion
Connectivity
Campatibility

i Model Referencing

- Hardware Implementation
- Model Referencing
=~ Real-Time ‘Workshop
- Comments

- Symbols

- Custom Code

- Debug

- |nterface
[=-HDL Coder

- Global Sethings
- Test Bench

- ED Tool Scrpts

#5, Configuration Parameters: internalRule_accumExp/Configuration (Active)

— Embedded hardware [zimulation and code generation]

Device vendar: IGeneriu:

Device lype: |32-bit Embedded Processor
MNumnber of hbits: char: IB
long: |32

zhort:

|1 B ink:

native word size:

Byte ardering: IUnspecified

Signed integer division rounds to; IUndefined

[V | Shitt right om & signedinteger az arithmetic shift

— Emulation hardware [code generation anly)

[~ Mone

Device vendar: IGeneriu:

Device lype: IU nzpecified [azsume 32-bit Generic)
MNumnber of bits: char: IB
long: |32

|1 B ink:

hative word size:

zhort:

—
—

Lelle

Bute ordering: IUnspecified

Signed integer division rounds to; IUndefined

[V | Shitt right om & signedinteger az arithmetic shift

Lelle

o]

Cancel Help

AEply

As you can see in the dialog box, this device has 8-, 16-, and 32-bit word
lengths available. Therefore, the ideal word lengths of 10, 17, and 128 bits
calculated by the internal rule cannot be used. Instead, the internal rule uses
the next largest available word length in each case You can see this if you
rerun the model, as shown in the following figure.

Specifying Fixed-Point Attributes

7] doc_internalRule_accumExp - 10l =]
File Edit Wiew Simulaton Format Tools Help
O @& HER|e= 4 =& b mfoo |[Nomal
2.5 =fixd) sioelf
e
Cutl
Constant Difference
2.5 =ficlf) =fie32 ’ -
[1-:5 :| 16 End » Diff ®32_End
Cut2
Constant! Difference1
Z.8 =127 . sfoeld) -
[1-25 :| o127_End > Diff ®32_End
Cuta
Constant2 Difference2
Ready 100% |ode4s 4

7-33

7 Working with Fixed-Point Data

Product Data Types. Consider the following model
doc_internalRule_prodExp.

E!doc_internalﬂule_prudb:p - |I:I|5|

File Edit Wiew Simulation Format Tools Help

DIEEH& LB (<= 4|22 o [[Noma)] 52
(2.5, 1.25] sfogl_End

.
“ Amay-Wector

' sfioel2_End
v Multiply .":]
S .
Amay-\ector

Multiply

.
“ Amay-Wector

sfiocd 1_End =
" Multiply .'-
3 sfiel5_En2 Out2
Amay-\ector

Multigly1

X

Ready 100%% FixedStepDiscrete
S

In the Array-Vector Multiply blocks, the Product Output parameter is set
to Inherit: Inherit via internal rule, and the Output parameter

is set to Inherit: Same as product output. Therefore, you can see the
product output data type calculated by the internal rule on the output signal
in the model. The setting of the Accumulator parameter does not matter
because this example uses real values.

For the preceding model, the Device type parameter in the Hardware
Implementation pane of the Configuration Parameters dialog box is set
to ASIC/FPGA. Therefore, the product data type used by the internal rule is
the ideal, full-precision result.

Calculate the full-precision word length for each of the Array-Vector Multiply
blocks in the model:

7-34

Specifying Fixed-Point Attributes

WLideal product = WLinput at WLinput b
WL;geal product = 7+5=12

WLideal productl = WLinput a™t WLinput b
WLigear productl = 16 +15=31

Calculate the full-precision fraction length, which is the same for each
Array-Vector Multiply block in this example:

FLigeq product =

FLigeq product = 4+2=6

FL;

input a

+ FLinput b

Now change the Device type parameter in the Hardware Implementation
pane of the Configuration Parameters dialog box to 32 bit Embedded
Processor, as shown in the following figure.

7-35

7 Working with Fixed-Point Data

7-36

Select:

- S olyver

- Diata lmnport/E xport

- Cptimization

[=- Diagnostics

Sample Time

o Data Validity

Type Conversion
Connectivity
Campatibility

i Model Referencing

- Hardware Implementation
- Model Referencing
=~ Real-Time ‘Workshop
- Comments

- Symbols

- Custom Code

- Debug

- |nterface
[=-HDL Coder

- Global Sethings
- Test Bench

- ED Tool Scrpts

#%, Configuration Parameters: internalRule_prodExp/Configuration (Active)

— Embedded hardware [zimulation and code generation]

Device vendar: IGeneriu:

Device lype: |32-bit Embedded Processor
MNumnber of hbits: char: IB
long: |32

zhort:

native word size:

|1 B ink:

Byte ardering: IUnspecified

Signed integer division rounds to; IUndefined

[V | Shitt right om & signedinteger az arithmetic shift

— Emulation hardware [code generation anly)

[~ Mone

Device vendar: IGeneriu:

Device lype: IMATLAB Hiost Computer
MNumnber of bits: char: IB
long: |32

zhort:

hative word size:

|1 B ink:

—
—

Lelle

Bute ordering: ILittIe Endiat

Signed integer division rounds to; IUndefined

[V | Shitt right om & signedinteger az arithmetic shift

Lelle

o]

Cancel

Help

AEply

As you can see in the dialog box, this device has 8-, 16-, and 32-bit word

lengths available. Therefore, the ideal word lengths of 12 and 31 bits

calculated by the internal rule cannot be used. Instead, the internal rule uses
the next largest available word length in each case. You can see this if you
rerun the model, as shown in the following figure.

Specifying Fixed-Point Attributes

E!doc_internalﬂule_prudb:p - |I:I|5|

File Edit Wiew Simulation Format Tools Help

DIEEH& LB (<= 4|22 o [[Noma)] 52
(2.5, 1.25] sfogl_End

.
“ Amay-Wector

' sfioe1G_End
v Multiply .":]
sfich_En2 Cutl
Amay-\ector

Multiply

.
“ Amay-Wector

sfioed2_End =
" Multiply .'-
3 sfiel5_En2 Out2
Amay-\ector

Multigly1

X

Ready 100%% FixedStepDiscrete
S

Example: Selecting and Specifying Data Types for
Fixed-Point Blocks

The following sections show you how to use the Fixed-Point Tool to select
appropriate data types for fixed-point blocks in the doc_dspcumsumfixpt
model:

® “Preparing the Model” on page 7-38

e “Using Data Type Override to Find a Floating-Point Benchmark” on page
7-42

¢ “Using the Fixed-Point Tool to Propose Fraction Lengths” on page 7-42
e “Examining the Results and Accepting the Proposed Scaling” on page 7-43

7-37

7 Working with Fixed-Point Data

7-38

Preparing the Model

1 Open the model by typing doc_fixedpoint_tut at the MATLAB command
line.

JRI=TEY

File Edit View Simulaton Format Tools Help

DeHE| & 2R | e 4222 p = B2 | [Noma BT GR
Signad g) Lsr:,:_r 8 pe| y_sfix
Signed Curnulative Sum o Workspaos
Unsigned b H"Sr:,:_r'; B y_ufix
Unsigned Cumulative Sum o Workspace 1
Fixed-Foint Sources
Ready [100% | | [FixedstepDiscrete L

This model uses the Cumulative Sum block to sum the input coming from
the Fixed-Point Sources subsystem. The Fixed-Point Sources subsystem
outputs two signals with different data types:

® The Signed source has a word length of 16 bits and a fraction length of
15 bits.

® The Unsigned source has a word length of 16 bits and a fraction length
of 16 bits.

2 Run the model to check for overflow. MATLAB displays the following
warnings at the command line:

Warning: Overflow occurred. This originated from
‘doc_fixedpoint_tut/Signed Cumulative Sum'.

Specifying Fixed-Point Attributes

Warning: Overflow occurred. This originated from
'doc_fixedpoint_tut/Unsigned Cumulative Sum'.

According to these warnings, overflow occurs in both Cumulative
Sum blocks. You can control the display of these warnings using the
“Configuration Parameters Dialog Box”.

3 To investigate the overflows in this model, use the Fixed-Point
Tool. You can open the Fixed-Point Tool by selecting
Tools > Fixed-Point > Fixed-Point Tool from the model
menu. Turn on logging for all blocks in your model by setting the
Fixed-point instrumentation mode parameter to Minimums, maximums
and overflows.

4 Now that you have turned on logging, rerun the model by clicking the
Run simulation and store active results button in the Simulation
settings pane.

— Simulation settings

@ | Run simulation and store Active results

Fixed-point instrumentation mode:

Irﬂinimums. maximums and overflows vl

Data type override:

IUSE |ozal s=ttings j

Cwerwrite or merge results:

IO'-.-'EI".-'-.'I'i‘tE ;I

5 The results of the simulation appear in a table in the central Contents
pane of the Fixed-Point Tool. Review the following columns:

¢ Name — Provides the name of each signal in the following format:
Subsystem Name/Block Name: Signal Name.

¢ SimDT — The simulation data type of each logged signal.

7-39

7 Working with Fixed-Point Data

7-40

® SpecifiedDT — The data type specified on the block dialog for each
signal.

¢ SimMin — The smallest representable value achieved during simulation
for each logged signal.

e SimMax — The largest representable value achieved during simulation
for each logged signal.

¢ OverflowWraps — The number of overflows that wrap during
simulation.

For more information on each of the columns in this table, see the “Contents
Pane” section of the Simulink fxptdlg function reference page.

You can also see that the SimMin and SimMax values for the Accumulator
data types range from 0 to .9997. The logged results indicate that 8,192
overflows wrapped during simulation in the Accumulator data type of the
Signed Cumulative Sum block. Similarly, the Accumulator data type of
the Unsigned Cumulative Sum block had 16,383 overflows wrap during
simulation.

To get more information about each of these data types, highlight them
in the Contents pane, and click the Show autoscale information for

selected result button (a |)

Assume a target hardware that supports 32-bit integers, and set the
Accumulator word length in both Cumulative Sum blocks to 32. To do so,
perform the following steps:

a Right-click the Signed Cumulative Sum: Accumulator row in the
Contents pane, and select Highlight Block In Model.

b Double-click the block in the model, and select the Data Types pane of
the dialog box.

¢ Open the Data Type Assistant for Accumulator by clicking the
Assistant button (=) in the Accumulator data type row.

d Set the Mode to Fixed Point. To see the representable range of the
current specified data type, click the Fixed-point details link. The

Specifying Fixed-Point Attributes

tool displays the representable maximum and representable minimum
values for the current data type.

[F Eixed-point details

Representable maximum: 32767 Assuming signed

Representable minimum: -32768 Assuming signed

Precision: i Refresh Details |

e Change the Word length to 32, and click the Refresh details button in
the Fixed-point details section to see the updated representable range.
When you change the value of the Word length parameter, the data
type string in the Data Type edit box automatically updates.

f Click OK on the block dialog box to save your changes and close the
window.

g Set the word length of the Accumulator data type of the Unsigned
Cumulative Sum block to 32 bits. You can do so in one of two ways:

® Type the data type string fixdt([],32,0) directly into Data Type
edit box for the Accumulator data type parameter.

¢ Perform the same steps you used to set the word length of the
Accumulator data type of the Signed Cumulative Sum block to 32 bits.

To verify your changes in word length and check for overflow, rerun your
model. To do so, click the Run simulation and store active results
button in the Fixed-Point Tool.

The Contents pane of the Fixed-Point Tool updates, and you can see that
no overflows occurred in the most recent simulation. However, you can
also see that the SimMin and SimMax values range from 0 to 0. This
underflow happens because the fraction length of the Accumulator data
type is too small. The SpecifiedDT cannot represent the precision of the
data values. The following sections discuss how to find a floating-point
benchmark and use the Fixed-Point Tool to propose fraction lengths.

7-41

7 Working with Fixed-Point Data

7-42

Using Data Type Override to Find a Floating-Point Benchmark

The Data type override feature of the Fixed-Point tool allows you to
override the data types specified in your model with floating-point types.
Running your model in True doubles override mode gives you a reference
range to help you select appropriate fraction lengths for your fixed-point data
types. To do so, perform the following steps:

2

Open the Fixed-Point Tool and set Data type override to True doubles.

Run your model by clicking the Run simulation and store active
results button.

Examine the results in the Contents pane of the Fixed-Point Tool. Because
you ran the model in True doubles override mode, you get an accurate,
idealized representation of the simulation minimums and maximums.
These values appear in the SimMin and SimMax parameters.

Now that you have an accurate reference representation of the simulation
minimum and maximum values, you can more easily choose appropriate
fraction lengths. Before making these choices, save your active results

to reference so you can use them as your floating-point benchmark. To
do so, select Results > Move Active Results To Reference from the
Fixed-Point Tool menu. The status displayed in the Run column changes
from Active to Reference for all signals in your model.

Using the Fixed-Point Tool to Propose Fraction Lengths

Now that you have your True doubles override results saved as a
floating-point reference, you are ready to propose fraction lengths.

To propose fraction lengths for your data types, you must have a set of
Active results available in the Fixed-Point Tool. To produce an active set
of results, simply rerun your model. The tool now displays both the Active
results and the Reference results for each signal.

Select the Use simulation min/max if design min/max is not available
check box. You did not specify any design minimums or maximums for the
data types in this model. Thus, the tool uses the logged information to
compute and propose fraction lengths. For information on specifying design
minimums and maximums, see “Checking Signal Ranges” in the Simulink
documentation.

Specifying Fixed-Point Attributes

3 Click the Propose fraction lengths button (il). The tool populates the
proposed data types in the ProposedDT column of the Contents pane.
The corresponding proposed minimums and maximums are displayed in
the ProposedMin and ProposedMax columns.

Examining the Results and Accepting the Proposed Scaling
Before accepting the fraction lengths proposed by the Fixed-Point Tool, it is
important to look at the details of that data type. Doing so allows you to see
how much of your data the suggested data type can represent. To examine the
suggested data types and accept the proposed scaling, perform the following
steps:

1 In the Contents pane of the Fixed-Point Tool, you can see the proposed
fraction lengths for the data types in your model.

¢ The proposed fraction length for the Accumulator data type of both the
Signed and Unsigned Cumulative Sum blocks is 17 bits.

® To get more details about the proposed scaling for a particular data type,
highlight the data type in the Contents pane of the Fixed-Point Tool.

¢ QOpen the Autoscale Information window for the highlighted data type
by clicking the Show autoscale information for the selected result

button (QI).

2 When the Autoscale Information window opens, check the Value and
Percent Proposed Representable columns for the Simulation
Minimum and Simulation Maximum parameters. You can see that the
proposed data type can represent 100% of the range of simulation data.

3 To accept the proposed data types, select the check box in the Accept
column for each data type whose proposed scaling you want to keep.

Then, click the Apply accepted fraction lengths button (E;ﬁ |). The
tool updates the specified data types on the block dialog boxes and the
SpecifiedDT column in the Contents pane.

7-43

7 Working with Fixed-Point Data

4 To verify the newly accepted scaling, set the Data type override
parameter back to Use local settings, and run the model. Looking at
Contents pane of the Fixed-Point Tool, you can see the following details:

® The SimMin and SimMax values of the Active run match the SimMin
and SimMax values from the floating-point Reference run.

® There are no longer any overflows.

® The SimDT does not match the SpecifiedDT for the Accumulator
data type of either Cumulative Sum block. This difference occurs
because the Cumulative Sum block always inherits its Signedness
from the input signal and only allows you to specify a Signedness of
Auto. Therefore, the SpecifiedDT for both Accumulator data types is
fixdt([]1,32,17). However, because the Signed Cumulative Sum block
has a signed input signal, the SimDT for the Accumulator parameter of
that block is also signed (fixdt(1,32,17)). Similarly, the SimDT for
the Accumulator parameter of the Unsigned Cumulative Sum block
inherits its Signedness from its input signal and thus is unsigned
(fixdt(0,32,17)).

7-44

Fixed-Point Filtering

Fixed-Point Filtering

In this section...

“Fixed-Point Filtering Blocks” on page 7-45
“Filter Implementation Blocks” on page 7-45

“Filter Design and Implementation Blocks” on page 7-46

Fixed-Point Filtering Blocks
The following Signal Processing Blockset blocks enable you to design and/or

realize a variety of fixed-point filters:

¢ CIC Decimation

e CIC Interpolation

¢ Digital Filter

o Filter Realization Wizard

® FIR Decimation

¢ FIR Interpolation

¢ Two-Channel Analysis Subband Filter
¢ Two-Channel Synthesis Subband Filter

Filter Implementation Blocks

The FIR Decimation, FIR Interpolation, Two-Channel Analysis Subband
Filter, Two-Channel Synthesis Subband Filter, and Digital Filter blocks are
all implementation blocks. They allow you to implement filters for which you
already know the filter coefficients. The first four blocks each implement
their respective filter type, while the Digital Filter block can create a variety
of filter structures. All filter structures supported by the Digital Filter block
support fixed-point signals.

For more information on these filter implementation blocks, see their
reference pages in the Block Reference.

7-45

7 Working with Fixed-Point Data

7-46

Filter Design and Implementation Blocks

The Filter Realization Wizard block invokes part of the Filter Design and
Analysis Tool from Signal Processing Toolbox software. This block allows you
both to design new filters and to implement filters for which you already know
the coefficients. In its implementation stage, the Filter Realization Wizard
creates a filter realization using Sum, Gain, and Delay blocks. You can use
this block to design and/or implement numerous types of fixed-point and
floating-point single-channel filters. See Chapter 3, “Filters” and the Filter
Realization Wizard reference page in the Block Reference more information
about this block.

The CIC Decimation and CIC Interpolation blocks allow you to design and
implement Cascaded Integrator-Comb filters. See their block reference pages
for more information.

Getting Started with
System Objects

* “What Are System Objects?” on page 8-2
e “Setting Up and Running System Objects” on page 8-3
¢ “Using System Objects with the Embedded MATLAB Subset” on page 8-9

8 Getting Started with System Objects

What Are System Obijects?

System objects are MATLAB object-oriented implementations of algorithms.
They extend MATLAB by enabling you to model dynamic systems represented
by time-varying algorithms. System objects are well integrated into the
MATLABIlanguage, regardless of whether you are writing simple functions,
working interactively in the command window, or creating large applications.

In contrast to MATLAB functions, System objects automatically manage
state information, data indexing, and buffering, which is particularly useful
for iterative or stream data processing. This enables efficient processing of
long data sets. System objects support fixed-point arithmetic and C-code
generation from MATLAB and Simulink. With System objects, you can
optionally generate code to target the desktop or external hardware. System
objects are part of the Embedded MATLAB® subset, and therefore can be used
in Simulink® models via the Embedded MATLAB function block.

Setting Up and Running System Obijects

Setting Up and Running System Obijects

In this section...

“Creating an Instance of a System Object” on page 8-3

“Using Methods to Run System Objects ” on page 8-6

“Finding Help and Demos for System Objects” on page 8-8

Creating an Instance of a System Object

You must create an instance of a System object before using it. You can
create the object at the MATLAB command line or within a program file.
The general syntax for creating an instance of a System object with default
property values is:

<handleName> = <packagename>.<0bjectName>
where:

® handleName is a MATLAB variable that holds the handle pointing to
the created object. System objects are handle objects and follow handle
semantics (e.g., when you call a method using the handle, it affects the
original object, not a copy of that object). See “The Handle Superclass” for
information on handle objects.See “Value or Handle Class — Which to Use”
in the MATLAB user documentation for information on object handles.

® packagename is the package that contains the particular object. Packages
are libraries of System objects. For example, these packages implement
object versions of associated algorithms.

= signalblks — a package that corresponds to the Signal Processing
Blockset

= video — a package that corresponds to the Video and Image Processing
Blockset™

® ObjectName is the particular object in the package.

This example creates a digital filter object, with default property values,
from the signalblks package:

8 Getting Started with System Objects

8-4

h = signalblks.DigitalFilter

Your command-line code and programs can pass MATLAB variables into and
out of System objects.

Understanding System Object Modes

System objects are in one of two modes: unlocked or locked. After you create
an instance of an object and until it starts processing data, that object is in
unlocked mode. You can change any of its properties as desired.

When the object begins processing data, it initializes and is locked. When
the object 1s locked, you cannot change the number of inputs or outputs

or the value of any nontunable property. You also cannot change the input
data type, dimensions, or complexity of any tunable or nontunable property.
These restrictions allow the object to maintain states and allocate memory
appropriately. The typical way in which an object becomes locked is when
the step method is called on that object. See “Changing Properties While
Running System Objects” on page 8-5 for information on tunable and
nontunable properties.

Viewing System Object Properties

System objects have properties that configure the object. You use the default
values or set each property to a specific value. The combination of a property
and its value is referred to as a property-value pair. You can display the list
of relevant properties and their current values for an object by using the
object handle only, <handleName>. Some properties are relevant only when
you set another property or properties to particular values. If a property

is not relevant, it does not display.

To display a particular property value, use the handle of the created object
followed by the property name: <handleName>.<propertyName>.

The following code gets the TransferFunction property value for the
previously created DigitalFilter object:

h.TransferFunction

Setting Up and Running System Obijects

Setting System Object Property Values

You set the property values of a System object to model the desired algorithm.
To set a property when you first create the object, use property-value pair
syntax. For properties that allow a specific set of string values, you can use
tab completion to select from a list of valid values.

<handleName> = <packageName>.<objectName>(propertyi,valuei,...
property2,value2...)

h1 = signalblks.DigitalFilter('TransferFunction', 'FIR (all zeros)')

To set a property after you create an object, use either of the following
syntaxes:

<handleName>.<propertyName> = <propertyValue>
h1.TransferFunction = 'FIR (all zeros)'

or

set(<handleName>,<propertyName>,<propertyValue>)
set(h1, 'TransferFunction', 'FIR (all zeros)'

You can enter property-value pairs in any order, except if you are using
value-only inputs. Some object properties have no useful default values or are
specified every time you create an instance of an object. For these properties,
you can specify only the value without specifying the corresponding property
name.

If you use value-only inputs, those inputs must be in a specific order.
Refer to the object reference page for details. For example, h2 =
signalblks.FIRDecimator(3,fir1(20,0.5)) specifies the decimation
factor as 3 and the numerator as fir1(20,0.5).

Changing Properties While Running System Obijects

When an object is in locked mode, it is processing data and you can only
change the values of properties that are tunable. To determine if a particular
System object property is tunable, see the corresponding reference page or
use help.<packageName>.<objectName>.<propertyName>. For information

8-5

8 Getting Started with System Objects

8-6

on locked and unlocked modes, see “Understanding System Object Modes”
on page 8-4.

For most objects, if you change a nontunable property while the object is
in locked mode, the object unlocks, loses its state information, and stops
processing. For a locked object, if you change the data type, dimensions

or complexity of an input or tunable property, the object reinitializes the
next time you call the step method. See the object’s reference page for more
information.

Using Methods to Run System Objects

After you create a System object, you use various object methods to obtain
information from the object or have it process data. As an extension of
MATLAB classes, most System objects include a standardized set of methods.
Some of these methods only apply to particular objects (see “Common Methods
” on page 8-7). All methods that are applicable to an object are described in
the reference pages for that object.

System object method names begin with a lowercase letter and class and
property names begin with an uppercase letter. The syntax for using methods
1s <methodName>(<handleName>).

Understanding the Advantages of Using Methods

System objects use two commands to process data—a constructor to create
the object and a method to run data through the object. This separation of
declaration from execution lets you create multiple, persistent, reusable
instances of an object, each with different settings. Using this approach
avoids repeated input validation and verification, allows for easy use within a
programming loop, and improves overall performance. MATLAB functions
must validate parameters every time you call the function.

These advantages make System objects particularly well suited for processing
streaming data, where segments of a continuous data stream are processed
iteratively. This ability to process streaming data provides the advantage of
not having to hold large amounts of data in memory. Use of streaming data
also allows you to use simplified programs that use loops efficiently.

Setting Up and Running System Obijects

Common Methods

System objects support the following methods, each of which is described in a
method reference page associated with the object. In cases where a method
is not applicable to a particular object, calling that method has no effect on
the object.

® step — Initializes needed resources, processes inputs to the object based on
the current object states and properties, returns outputs, and updates the
object states. After you call the step method, you cannot change any input
specifications (i.e., dimensions, data type, complexity). During execution,
you can change only tunable properties. The step method returns regular
MATLAB variables.

Note For System objects that perform calculations on data (and not just
rearrange data), if you pass non-floating point data into that object, it
outputs a fixed-point numeric fi object, even if you specify the output data
type to be to same as the input data type.

When you create a source object, you specify whether step processes the
data as samples or as frames. If the object is a source, step produces
outputs but has no inputs. If the object is a sink, step requires inputs,
but produces no outputs. For all other objects, step has both inputs and
outputs, [outl,...,0outN] = step(h,in1,...,inM).

* reset — Resets the internal states of the object to the initial values for
that object.

® getNumInputs — Returns the number of inputs expected by the step method.

This number varies for an object depending on whether any properties
enable additional inputs.

® getNumOutputs — Returns the number of outputs from the step method.
This number varies for an object depending on whether any properties
enable additional outputs.

e isDone — Applies only to source objects with end-of-data capability. isDone
returns logical true when the most recent step call reaches the end-of-data

state. This method returns false if either end-of-data is not reached or if
the source object does not have end-of-data capability

8-7

8 Getting Started with System Objects

8-8

® close — Applies to sink and source objects only. close releases any special
resources allocated by the object, such as file handles and device drivers.

Finding Help and Demos for System Objects

Refer to the following resources for more information about System objects:

® help <packagename> — Lists all System objects in the package, organized
by category.

®* help <packagename>.<ObjectName> — Displays help for the object.

® doc <packagename>.<ObjectName> — Displays the reference page for the
object, including its properties.

® help <packageName>.<ObjectName>.<PropertyName> — Displays help
for the property

® help <packageName>.<ObjectName>.helpFixedPoint — Displays a list of
fixed—point properties for the object.

® help <packagename>.<ObjectName>.<methodName> — Displays the
method reference page for the object.

® Demos — Provides System object related demos. To view demos, go to online
Help contents for the associated product blockset. Under Demos, select
MATLAB demos.

e Object-Oriented Programming in the MATLAB user documentation —
Provides general information about working with objects.

Using System Obijects with the Embedded MATLAB Subset

Using System Objects with the Embedded MATLAB Subset

In this section...

“Considerations for Using System Objects with the Embedded MATLAB
Subset” on page 8-9

“Using System Objects with Embedded MATLAB Coder” on page 8-11

“Using System Objects with the Embedded MATLAB Function Block” on
page 8-12

“Using System Objects with Embedded MATLAB MEX” on page 8-12

Considerations for Using System Objects with the

Embedded MATLAB Subset

You can use System objects in code generated using the Embedded MATLAB
subset, which is part of the MATLAB language. To generate code, you must
also have Simulinkand Real-Time Workshop products. Embedded MATLAB
lets you generate efficient code for deployment in embedded systems. It also
accelerates fixed-point algorithms. System objects support code generation
using the Embedded MATLAB function block in Simulink and using the
Embedded MATLAB coder function.

For general information on using Embedded MATLAB, see

® Working with the Embedded MATLAB Subset.
® Embedded MATLAB Getting Started Guide.
e Real-Time Workshop® Embedded Coder™ Getting Started Guide.

You can customize your generated code by using a configuration object, which
is described in “Configuring Your Environment for Code Generation”.

The following example, which uses System objects, shows the key factors to
consider when you write MATLAB code to be generated using Embedded
MATLAB.

function lmssystemidentification
% LMSSYSTEMIDENTIFICATION System identification using

8-9

8 Getting Started with System Objects

8-10

% LMS adaptive filter
s#eml

end

% Declare System objects as persistent to generate code
% using Embedded MATLAB.

persistent hlms hfilt;
% Initialize persistent System objects in Embedded MATLAB

only once. Do this with 'if isempty(persistent variable).'
% This condition will be false after the first time.

o°

if isempty(hlms)

o°

Create LMS adaptive filter used for system
identification. Pass property value arguments
as constructor arguments. Property values must
be constants during compile time.

o® o°

o°

hlms = signalblks.LMSFilter (11, 'StepSize', 0.01);
% Create system (an FIR filter) to be identified.
hfilt = signalblks.DigitalFilter(...

‘TransferFunction', 'FIR (all zeros)',
‘Numerator', fir1(10, .25));

end

X = randn(1000,1); % Input signal

d = step(hfilt, x) + 0.01*randn(1000,1); % Desired signal
[~,~,w] = step(hlms, x, d); % Filter weights

% Declare functions called into MATLAB that do not generate
% code as extrinsic.

eml.extrinsic('stem');

stem([get(hfilt, 'Numerator').', w]);

Using System Obijects with the Embedded MATLAB Subset

% To compile this function use emlc 1lmssystemidentification.
This produces a mex file with the same name in the current
d

irectory.

o°

o°

Review the following considerations when you create code that includes
System objects for use with the Embedded MATLAB subset .

® Assign System objects to persistent variables.

¢ Initialize System objects once by embedding the object handles in an if
statement with a call to isempty().

e (Call the constructor exactly once for any instance of a System object.
® Arguments to System object constructors must be compile-time constants.

e Use the object constructor to set System object properties because
Embedded MATLAB does not allow you to use dot notation. Do not set any
properties during code generation. You can use get to display properties.

® Set System object properties using parameter-value pairs only. Do not
use value-only inputs.

¢ Ensure that input to a System object is consistent with the object size,
type, and complexity.

® Do not set System objects to become outputs from the Embedded MATLAB
function block or from a MEX function generated by Embedded MATLAB.

* Do not pass a System object as an example input argument to a function
being compiled with Embedded MATLAB Coder.

® Do not pass a System object from within Embedded MATLAB to functions
declared as extrinsic (i.e., functions called in interpreted mode) using
eml.extrinsic. Do not return System objects from any extrinsic functions.

Using System Objects with Embedded MATLAB Coder

Embedded MATLAB Coder (emlc) is a Real-Time Workshop function that
converts MATLAB code into C-code. You can include System objects in a
MATLAB program in the same way you include any other program elements.
For more information on Embedded MATLAB Coder, see “Converting
MATLAB Code to C/C++ Code” and “Generating C Code Using emlc”.

8-11

8 Getting Started with System Objects

8-12

Using System Objects with the Embedded MATLAB
Function Block

Using the Embedded MATLAB Function block, you can include a MATLAB
language function in a Simulink model. This model can then generate
embeddable code using the Embedded MATLAB subset. You can include any
System object in the Embedded MATLAB function block. System objects
provide higher level algorithms for code generation than do most associated
blockset blocks. For more information about the Embedded MATLAB
Function block, see Using the Embedded MATLAB Function Block and

the Embedded MATLAB Function block reference page in the Simulink
documentation.

Using System Objects with Embedded MATLAB MEX

You can use System objects with Embedded MATLAB MEX (emlmex), which
is particularly useful if you are using System objects that include fixed-point
support. emlmex converts MATLAB code to C-MEX code which is optimized
specifically to accelerate fixed-point algorithms to compiled C-code speed.
For more information, see “Working with Embedded MATLAB MEX” in the
Embedded MATLAB language subset documentation.

Using Signal Processing
System Objects

e “What Are Signal Processing System Objects?” on page 9-2
® “Generating Code for Signal Processing System Objects” on page 9-3
e “Working with Signals and Fixed-Point Data” on page 9-5

¢ “Example: Using System Objects in Signal Processing Applications:
Filtering an Audio Stream” on page 9-15

9 Using Signal Processing System Objects

What Are Signal Processing System Objects?

Signal processing System objects are object-oriented implementations of
signal processing algorithms. This set of System objects is organized in a
single package, signalblks. Many of these objects correspond to block
algorithms in the Signal Processing Blockset. A key difference between blocks
and System objects is that you include blocks in Simulink models whereas you
include System objects in programs or MATLAB command-line code.

Signal processing System objects provide these advantages.

® Support for code generation of algorithms in MATLAB (see “Generating
Code for Signal Processing System Objects” on page 9-3).

¢ Additional support for fixed-point-capable algorithms in MATLAB (see
“Working with Fixed-Point Data” on page 9-10).

Generating Code for Signal Processing System Obijects

Generating Code for Signal Processing System Objects

These signal processing System objects support code generation in MATLAB
via Embedded MATLAB Coder (emlc), which requires Simulink and
Real-Time Workshop. See “Using System Objects with the Embedded
MATLAB Subset” on page 8-9 for information on generating code.

Signal Processing Code Generation Support

signalblks.ArrayVectorAdder
signalblks.ArrayVectorDivider
signalblks.ArrayVectorMultiplier
signalblks.ArrayVectorSubtractor

signalblks
signalblks
signalblks
signalblks

signalblks

signalblks
signalblks
signalblks

.BiquadFilter
.BurgAREstimator
.CepstralTolLPC
.CholeskyFactorization
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.

Convolver
Counter
Crosscorrelator
CumulativeProduct
CumulativeSum
DCT

Delay

DelayLine
DigitalFilter
FFT
FIRInterpolator
FIRRateConverter

.Histogram
signalblks.
signalblks.
.Interpolator
.LMSFilter
.LPCToAutocorrelation
signalblks.
signalblks.
signalblks.

IDCT
IFFT

LPCToCepstral
LPCTOLSF
LPCToRC

9 Using Signal Processing System Objects

9-4

signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
.Window
signalblks.

signalblks

LSFToLPC
LUFactorization
LevinsonSolver
LowerTriangularSolver
Maximum

Mean

Median

Minimum

NCO

Normalizer

PeakFinder
PhaseUnwrapper
QRFactorization
QRSolver

RCToLPC

RMS
ScalarQuantizerDecoder
ScalarQuantizerEncoder
SineWave
StandardDeviation
UpperTriangularSolver
VariableFractionalDelay
VariableIntegerDelay
Variance
VectorQuantizerDecoder
VectorQuantizerEncoder

ZeroCrossingDetector

Working with Signals and Fixed-Point Data

Working with Signals and Fixed-Point Data

In this section...

“What Are Sample- and Frame-Based Processing?” on page 9-5
“Working with Fixed-Point Data” on page 9-10

What Are Sample- and Frame-Based Processing?

System objects interpret signals as either sample-based or frame-based inputs.
Signals can also be either single channel or multichannel. In sample-based
processing, the input signal is processed one sample at a time, rather than in
batches of samples (see“Sample-Based Single Channel Processing” on page 9-5
and “Sample-Based Multichannel Processing” on page 9-6). In frame-based
processing, portions of the input signal are batched into frames and each
frame is processed separately (see “Frame-Based Single Channel Processing”
on page 9-7 and “Frame-Based Multichannel Processing” on page 9-7).

See “Setting the Sample- or Frame-Based Processing Property” on page 9-9for
information on setting the property that controls sample- or frame-based
processing.

Note System objects process all multidimensional (n-D) array input, where n
> 2, as sample based.

Sample-Based Single Channel Processing

The following figure shows a discrete-time signal. This signal is single
channel because it is one independent sequence of numbers. System objects
processes this signal as sample-based if each sample is processed separately.

_,‘Ts .

ﬁ?ﬂjj’???ﬂ 175 i

b7 fime [s)

9-5

9 Using Signal Processing System Objects

9-6

Sample-Based Multichannel Processing

An M-by-N matrix that a System object processes as sample-based inputs
represents M*N independent channels. Each matrix element represents one
sample from a distinct channel, i.e., each channel contains a single value.

For example, consider the 24-channel (6-by-4) multichannel signal in the next
figure, where u!7 is the first matrix in the series, u'~! is the second, etc.

Sample 4

(u*?)

Channel 1 4 4 4 a
. | 4 4 Sample 3
_‘H“h.. l:ut=2:|
NS [[[3

e el e

NS

LT - T - -
F-1
/5;

Sample
(u™)
2
2 Sample
(u™)

Channel &

N
2
2
2
2

The signal in channel 1 is the following sequence:

t=0 _t=1 _t=2
uil ,uU11 >U11 .-

Working with Signals and Fixed-Point Data

Similarly, channel 9 (counting down the columns) contains the following
sequence:

t=0 _t=1 =2
ugg ,U39 ,U39 ;...

When a System object processes this signal as sample-based input, it
processes each element in a sequence separately. This type of processing for a
large multichannel signal is very expensive and not very practical.

Frame-Based Single Channel Processing

Data samples are typically transmitted in batches, or frames, and not as
single elements. For efficiency and to reduce computational costs, most
signals are processed as frames, which processes multiple samples at once.
A frame of data is a collection of sequential samples from a single channel
or multiple channels. One frame of a single-channel signal is represented
by an M -by-1 column vector.

Frame-Based Multichannel Processing

One frame of a multichannel signal is represented by an M-by-NN matrix. Each
matrix column is a different channel, and each row is a sample, containing
multiple data points. The number of rows in the matrix represents the
number of samples within each frame. Consider a sequence of frame matrices,
where u/7? is the first matrix (i.e., first frame) in a series, u*~! is the second,
u'=? is the third, etc.

9-7

9 Using Signal Processing System Objects

Frame 3
(™)

14 | 14 | 14 | 14

15 | 15 | 15 | 15 Ffﬂ(mgz]
[¥]
17 |17 11 g [8| 8| s
18 | 18 9 9 Framte'l
ch1 ch2 (u")
10 | 10 1 1 1 1
11 | 11 > | 2 | 2| 2
12112f1'3 | 3|33
i) h2
otoe a | a|ala
5 | 5|5 |s
6 | 6| 6| 6

ch ch2 ch3 ch4

This sequence represents the data in channel 1:

t=0 _¢=0 =0 t=0 t=1 t=2 t=2
ull U1 U315 UM, UTL ’u21 ’u31 »” uMl’ull YUT e

Similarly, this next sequence represents the data in channel 3:
t=0

t=0 _t=0 t=0 _t=1 _t=1 _t=1 t=1 =2 =2
Uis ,u23 , Uzg .-, Upr3,U13 LU23 ,U33 .-, Upr3,UT3 ,U23 -

When a System object processes a signal as frame-based input, that object
processes each frame in a sequence separately.

9-8

Working with Signals and Fixed-Point Data

Setting the Sample- or Frame-Based Processing Property

All System objects support sample-based processing and some System objects
support both sample- and frame-based processing. To specify how your object
should process input data, you set the FrameBasedProcessing property. The
property has a default value of true, which enables frame-based processing.
To select sample-based processing, you set the FrameBasedProcessing
property to false.

Benefits of Frame-Based Processing

Frame-based processing accelerates both real-time systems and simulations.
Real-time systems typically process data in frames. Data acquisition
hardware often operates by accumulating a large number of signal samples at
a high rate and propagating these samples to the real-time system as a block
of data. This operation maximizes the efficiency of the system by distributing
the process overhead across many samples. Such distribution allows the
relatively fast data acquisition to be interrupted less by the relatively slow
data processing after each frame is acquired, rather than after each individual
sample.

The next figure illustrates how frame-based data acquisition increases
throughput. The thin blocks each represent the time elapsed during
acquisition of a sample. The wider blocks each represent the time elapsed
during the interrupt service routine (ISR) that reads the data from the
hardware.

In this example, the frame-based operation acquires a frame of 16 samples

between each ISR. The frame-based throughput rate is many times higher
than the sample-based alternative.

9-9

9 Using Signal Processing System Objects

9-10

Soraple-based operation

ISR
—hy

QL) A 1 i) R

I—n:quiresnmple

Frome-based operation

acquire 16 samples I5R

Py '—Lq

AL AL L LB G AL B Iy QG G GL L U B LG L ARG L

A . . . W fime
latency

Working with Fixed-Point Data

® “Getting Information About Fixed-Point System Objects” on page 9-10
¢ “Displaying Fixed-Point Properties” on page 9-12
® “Setting System Object Fixed-Point Properties” on page 9-13

Getting Information About Fixed-Point System Obijects

General information about working with fixed-point data processing is in
the Chapter 7, “Working with Fixed-Point Data” topic. This topic refers to
models and blocks, but the information and concepts apply to System objects,
too. Applicable subtopics are:

e “Fixed-Point Signal Processing Development” on page 7-2 — fixed-point
hardware, design and applications

® “Concepts and Terminology” on page 7-5 — data types, scaling, and precision
and range

* “Arithmetic Operations” on page 7-11 — modulo, two’s complement,
addition, subtraction, multiplication, and casts

® “Specifying Fixed-Point Attributes” on page 7-22 — fixed-point parameters
(which correspond to System object properties), system-level settings and
inheriting via the internal rule

Working with Signals and Fixed-Point Data

¢ “Fixed-Point Filtering” on page 7-45 — fixed-point issues for filtering

System objects that support fixed-point data processing have fixed-point
properties, which you can display for a particular object by typing
signalblks.<ObjectName>.helpFixedPoint at the command line. See
“Displaying Fixed-Point Properties” on page 9-12 to set the display of System
object fixed-point properties.

The following signal processing System objects support fixed-point data

processing.

Signal Processing System Objects That Support Fixed-Point Data

Processing

signalblks
signalblks
signalblks
signalblks
signalblks

signalblks

signalblks
signalblks
signalblks

.ArrayVectorAdder
.ArrayVectorDivider
.ArrayVectorMultiplier
.ArrayVectorSubtractor
.Autocorrelator
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.

BiquadFilter
Convolver
Counter
Crosscorrelator
CumulativeProduct
CumulativeSum
DCT
DigitalFilter
FFT

FIRDecimator
FIRInterpolator
FIRRateConverter

.Histogram
signalblks.
signalblks.
.LDLFactorization
.LMSFilter
.LUFactorization
signalblks.

IDCT
IFFT

LevinsonSolver

9-11

9 Using Signal Processing System Objects

9-12

signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.
signalblks.

LowerTriangularSolver
Maximum

Mean

Median

Minimum

NCO

Normalizer

PeakFinder
ScalarQuantizerDecoder
ScalarQuantizerEncoder
SineWave
SubbandAnalysisFilter
SubbandSynthesisFilter
UpperTriangularSolver
VariableFractionalDelay
VariableFractionalDelay
Variance
VectorQuantizerDecoder
VectorQuantizerEncoder

Displaying Fixed-Point Properties
You can control whether the software displays fixed-point properties with
either of the following commands:

® matlab.system.ShowFixedPointProperties

® matlab.system.HideFixedPointProperties

at the MATLAB command line. These commands set the Show fixed-point
properties display option. You can also set the display option directly via the
MATLAB preferences dialog box. Select File > Preferences on the MATLAB
desktop, and then select System Objects. Finally, select or deselect Show
fixed-point properties.

Working with Signals and Fixed-Point Data

_iojx

E|--Gu_2nera| System Objects Preferences
+MAT-Files

Source Control

[#-Keyboard

Confirmation Dialogs Display options
’7|_ Show fixed-point properties

[#]-Fonts
- Colars
--M-Lint

- Command Window

- Command Histary
[#]-Editor /[Debuager
-Help

----- Webh

- Current Folder

----- Variable Editor

----- Workspace

- GUIDE

----- Time Series Tools
[#]-Figure Copy Template
- Compiler

--Report Generator

----- Image Processing

B ystem Objects
- Simulink:

- Simscape

- 5ignal Processing Blockset
----- Video and Image Processing

oK I Cancel | Apply Help

If an object supports fixed-point data processing, its fixed-point properties are
active regardless of whether they are displayed or not.

Setting System Object Fixed-Point Properties

A number of properties affect the fixed-point data processing used by a
System object. Objects perform fixed-point processing and use the current
fixed-point property settings when they receive fixed-point input.

You change the values of fixed-point properties in the same way as you change
any System object property value. See “Setting System Object Property

9-13

9 Using Signal Processing System Objects

9-14

Values” on page 8-5. You also use the Fixed-Point Toolboxnumerictype object
to specify the desired data type as fixed-point, the signedness, and the word-
and fraction-lengths. System objects support these values of DataTypeMode:
boolean, double, single, and Fixed-point: binary point scaling.

In the same way as for blocks, the data type properties of many System
objects can set the appropriate word lengths and scalings automatically by
inheriting via the internal rule (see “Inherit via Internal Rule” on page 7-26
for how this rule applies to different types of blocks and objects).

In most cases, if you have not set the property that activates a dependent
property and you attempt to change that dependent property, a warning
message displays. As a convenience, if you set a dependent, fixed-point,
Custom<xxx>DataType property before setting the <xxx>DataType
property, the System object automatically sets <xxx>DataType for you

to activate the dependent property. <xxx> differs for each object. For
example, for the signalblks.FFT object, setting CustomOutputDataType to
numerictype(1,32,30) automatically sets OutputDataType to 'Custom'.

Example: Using System Obijects in Signal Processing Applications: Filtering an Audio Stream

Example: Using System Obijects in Signal Processing
Applications: Filtering an Audio Stream

This algorithm reads and filters a long audio stream, and then plays it with
an audio player. The MultimediaFileReader System object specifies the
desired file name directly as the first input argument to the constructor. For
efficiency and to provide optimum results, the objects are instantiated outside
the while loop.

% Create handle reference to object that reads a multimedia file.
hAudioIn = signalblks.MultimediaFileReader('speech_dft.avi');

% Create handle reference to object for a lowpass FIR filter.
hFiltLP = signalblks.DigitalFilter(...
'TransferFunction', 'FIR (all zeros)',
"Numerator',fir1(16,0.375));

% Create handle reference to a component that sends audio
% to the speakers at a specified sampling rate.
hAudioOut = signalblks.AudioPlayer('SampleRate',22050);

o°

Call the processing loop to read the audio stream, filter it
and play it. The loop stops when you reach the end of the
input file, which is detected by the MultimediaFileReader
component.
while ~isDone(hAudiolIn)

data step(hAudiolIn);

temp = step(hFiltLP, data);

step(hAudioOut, temp);

end
% Wait for the audio queue to finish streaming

pause(1);

o° o°

o°

% Call the close method on components to close files and devices.
close(hAudioIn);

close(hAudioOut) ;close(hAudioIn);

close(hAudioOut);

9-15

9 Using Signal Processing System Objects

Separating the instantiation of the objects from the data processing section
eliminates the repeated parsing and validation of the input data and property
values. Such separation also avoids resetting of algorithm parameters
repeatedly in the loop.

9-16

A

adaptive filters 3-53
creating 3-55
customizing 3-60

add
samples 2-25

algebraic loop errors 2-58

algorithmic delay 2-51
adjustable 2-54
and 1nitial conditions 2-54
basic 2-54
excess 2-57
relation to latency 2-57
zero 2-51

analog filter designs 3-51
See also filter designs

angular frequency 1-2
See also periods

arithmetic operations
fixed-point 7-11

arrays
importing 1-61

attenuation
stopband 3-51

auto-promoting rates 1-9

avoiding unintended rate conversion 2-19

band configurations 3-51
bandpass filter designs

analog, available parameters 3-51
bandstop filter designs

analog, available parameters 3-51
basic

statistical operations 6-3
basic algorithmic delay 2-54
benefits

frame-based processing 2-50
block parameters

fixed-point 7-22
block rate types 2-58
blocks
multirate 2-58
single-rate 2-58
Buffer overlap parameter
negative values for 2-37
buffering 2-25
altering the sample period of the signal 2-30
altering the signal 2-26
causing unintentional rate conversions 2-24
frame-based signals into other frame-based
signals 2-41
internal 2-36
preserving the sample period of the
signal 2-27
sample-based signals into frame-based
signals 2-33
sample-based signals into frame-based
signals with overlap 2-37
butter function 3-52
Butterworth filter designs
analog 3-51
band configurations for 3-51

C

casts
fixed-point 7-17
changing
frame sizes 2-15
the frame size of a signal 2-27
channels
of a sample-based signal 1-13
cheby1 function 3-52
cheby2 function 3-52
Chebyshev type I filter designs
analog 3-51
band configurations for 3-51
Chebyshev type II filter designs

Index-1

Index

analog 3-51
band configurations for 3-51

choosing

filter design blocks 3-18

close method 8-8
code generation

fixed-point 7-3
generic real-time (GRT) 2-50
signal processing objects 9-3

combining

frame-based signals 1-39
multichannel sample-based signals 1-35
single-channel sample-based signals 1-32

complex multiplication

fixed-point 7-14

computational delay 2-49

reducing 2-49

concatenating

frame-based signals 1-39
multichannel sample-based signals 1-35
single-channel sample-based signals 1-32

concepts

frame rate 2-2
sample rate 2-2

configuring

vector quantization model 5-11

continuous-time

discretizing signals 1-11
signals 1-11
source blocks 1-11

conventions

time and frequency 1-2

converting 2-12

Index-2

frame rates 2-12

frame-based signals into other frame-based
signals 2-41

sample-based signals into frame-based
signals 2-33

sample-based signals into frame-based
signals with overlap 2-37

See also rate conversion
creating
1-D vector signal 1-20
adaptive filters 3-55
fixed-point filters 3-32
frame-based signals 1-25
multichannel frame-based signals 1-38
multichannel sample-based signals 1-32
sample-based signals 1-19
scalar quantizers 5-5
vector quantizers 5-10
customizing
adaptive filters 3-60

D

deconstructing
multichannel frame-based signals 1-49
multichannel frame-based signals into
individual signals 1-49
multichannel sample-based signals 1-42
multichannel sample-based signals into
individual signals 1-42
multichannel sample-based signals into
other multichannel signals 1-45
delay
algorithmic 2-51
computational 2-49
rebuffering 2-44
relation to latency 2-57
delete
samples 2-25
demos
multirate filtering 3-74
designing
adaptive filters 3-55
fixed-point filters 3-32
scalar quantizers 5-5
vector quantizers 5-10
Digital Filter block

Index

filtering noise with 3-5
Digital Filter Design block

filtering noise with 3-25
digital frequency 1-2

defined 1-2

See also periods
discrete-time signals 1-2

characteristics 1-2

defined 1-2

terminology 1-2

See also signals

discretizing a continuous-time signal 1-11

displaying
frequency-domain data 1-100
line widths 2-12
time-domain data 1-79
downsampling 2-12
See also rate conversion

ellip function 3-52
elliptic filter designs

analog 3-51

band configurations for 3-51
errors

algebraic loop 2-58

due to continuous-time input to a

discrete-time block 1-11

sample-rate mismatch 1-6
estimation

power spectrum 6-6
examples

latency 2-59

multirate filtering 3-74
exporting

frame-based signals 1-73

sample-based signals 1-65

F

factoring matrices 6-9
FFT block
using 4-2
FFT length parameter 2-21
filter band configurations 3-51
filter design blocks
choosing 3-18
filter designs
available parameters 3-51
butter function 3-52
Butterworth 3-51
cheby1 function 3-52
cheby2 function 3-52
Chebyshev type I 3-51
Chebyshev type IT 3-51
continuous-time 3-51
ellip function 3-52
elliptic 3-51
passband ripple 3-51
stopband attenuation 3-51
filtering an audio stream
System object example 9-15
filters
adaptive 3-53
creating a highpass filter 3-23
creating a lowpass filter 3-21
Filter Realization Wizard 3-31
filtering noise with Digital Filter blocks 3-5
filtering noise with Digital Filter Design
blocks 3-25
fixed-point 7-45
implementing a highpass filter 3-4
implementing a lowpass filter 3-3
multirate 3-66
fixed point
System object preferences 9-12
fixed point properties
System objects 9-13
fixed-point attributes, specification

Index-3

at the block level 7-22
at the system level 7-25
fixed-point block parameters
setting 7-22
fixed-point code generation 7-3
fixed-point data types 7-5
addition 7-13
arithmetic operations 7-11
attributes 7-22
casts 7-17
complex multiplication 7-14
concepts 7-5
filters 7-45
logging 7-25
modular arithmetic 7-11
multiplication 7-14
overflow handling 7-7
precision 7-7
range 7-7
rounding 7-8
saturation 7-7
scaling 7-6
subtraction 7-13
terminology 7-5
two’s complement 7-12
wrapping 7-7
fixed-point development
benefits 7-2
fixed-point DSP applications 7-4
fixed-point filters
designing and implementing 3-32
Fixed-Point Tool 7-25
fixed-step solvers 1-6
frame periods 2-11
altered by unbuffering 2-45
constant 2-12
converting 2-11
multiple 2-12
related to sample period and frame size 2-2
Simulink Probe block 2-5

Index-4

See also rate conversion
frame rates 1-9
auto-promoting 1-9
color coding 2-9
concepts 2-2
inspecting 2-9
See also frame periods
frame rebuffering
blocks for 2-24
frame sizes 2-11
changing 2-27
constant 2-12
converting 2-11
converting by rebuffering 2-11
direct rate conversion 2-11
maintaining a constant frame rate 2-12
maintaining a constant sample rate 2-25
related to sample period and frame
period 2-2
See also rate conversion
frame-based multichannel processing 9-7
frame-based multichannel signals 1-15
See also signals
frame-based processing 9-5
benefits 2-50
latency 1-17
frame-based signals
benefits of 1-16
combining 1-39
concatenating 1-39
converting to other frame-based signals 2-41
creating 1-25
deconstructing multichannel signals 1-49
exporting 1-73
importing 1-70
importing and exporting 1-70
multichannel 1-15
reordering channels in a multichannel
signal 1-54
separating multichannel signals 1-49

Index

single channel 1-15

unbuffering to sample-based signals 2-45
frame-based single channel processing 9-7
frame-matrices

format of 1-15
frame-rate adjustment

rate conversion 2-12
frame-size adjustment

rate conversion 2-15
frequencies 1-2

normalized 3-51

normalized linear 1-2

terminology 1-2

See also periods
frequency-domain data

displaying 1-100

transforming it into the time domain 4-7

G

generated code

generic real-time (GRT) 2-50
getNumlInputs method 8-7
getNumOutputs method 8-7

H

highpass filter designs
continuous-time 3-51
Hz (hertz) 1-2
defined 1-2
See also sample periods

|

IFFT block
using 4-7

importing
arrays 1-61

frame-based signals 1-70

pages of an array 1-61
sample-based matrices 1-61
sample-based signals 1-58
sample-based vector signals 1-58
importing and exporting
frame-based signals 1-70
sample-based signals 1-58
inherit via internal rule 7-26
inheriting sample periods 1-11
initial conditions
with basic algorithmic delay 2-54
input frame periods
defined 2-2
inspecting
frame periods 2-5
frame rates 2-9
sample periods 2-3
sample rates 2-7
inversion of matrices 6-11
isDone method 8-7

L

latency 2-57

due to frame-based processing 1-17

predicting 2-59

reducing 2-57

relation to delay 2-57
libraries

Statistics 6-2
line widths

displaying 2-12
linear algebra

solving linear systems 6-7
locked vs. unlocked mode 8-4
logging

fixed-point data types 7-25
lowpass filter designs

continuous-time 3-51

Index-5

Index

M

matrices
factoring 6-9
format of frame-based 1-15
inverting 6-11
maximum 6-2
mean 6-2
minimum 6-2
models
multirate 2-12
modes
tasking 2-57
modular arithmetic 7-11
multichannel
frame-based signals 1-38
sample-based signals 1-32
multichannel signals 1-13
See also signals
multiplication
fixed-point 7-14
multirate
blocks 2-58
demos 3-74
examples 3-74
models 2-58
multitasking mode 2-57

normalized frequencies 1-2
defined 1-2
See also frequencies
Nyquist frequency
defined 1-2
Nyquist rate 1-2

o

output frame periods

Index-6

defined 2-2
overflow handling 7-7
overlapping buffers

causing unintentional rate conversions 2-24

P

padding 7-19
pages of an array
importing 1-61
parameters
Buffer overlap, negative values for 2-37
continuous-time filter 3-51
FFT length 2-21
normalized frequency 3-51
Partial Unbuffer block 2-26
partial unbuffering 2-25
passband ripple
analog filter 3-51
performance
improving 1-16
periods 1-2
defined 1-2
See also sample periods and frame periods
power spectrum estimation 6-6
precision
fixed-point data types 7-7
predicting
tasking latency 2-59
preferences 9-12
preventing unintended rate conversion 2-19
Probe block 2-3
property values 8-5

Q

quantizers
scalar 5-2
vector 5-10

Index

range
fixed-point data types 7-7
rate conversion 2-12
avoiding 2-19
avoiding rate-mismatch errors 1-7
blocks for 2-11
by unbuffering 2-45
direct 2-11
frame-rate adjustment 2-12
frame-size adjustment 2-15
rate types
block 2-58
model 2-58
rates 2-2
auto-promoting 1-9
See also sample periods and frame periods
Real-Time Workshop
generating generic real-time (GRT) code 2-50
rebuffering 2-25
altering the sample period of the signal 2-30
altering the signal 2-26
causing unintentional rate conversions 2-24
delay 2-44
preserving the sample period of the
signal 2-27
reducing
latency 2-57
reflection coefficients
identifying 5-4
reordering channels
in multichannel frame-based signals 1-54
reset method 8-7
residual signal
identifying 5-4
ripple
passband 3-51
rounding
fixed-point data types 7-8
running

vector quantization model 5-11
running operations 6-4

S

sample frequency 1-2

definition 1-2

See also sample periods
sample modes 2-59
sample periods 1-2

altered by unbuffering 2-45

Buffer block 2-26

continuous-time 1-11

defined 1-2

for frame-based signals 2-2

inherited 1-11

maintaining constant 2-25

nonsource blocks 1-11

of source blocks 1-11

Rebuffer block 2-26

related to frame period and frame size 2-2

Simulink Probe block 2-3

See also frame periods and sample times
sample rates 1-2

auto-promoting 1-9

color coding 2-7

concepts 2-2

defined 1-2

inspecting 2-7

See also sample periods
sample time

of original time series parameter 2-24
sample times 1-2

defined 1-2

in Signal Processing Blockset 1-3

shifting with sample-time offsets 2-4

See also sample periods and frame periods
sample-based multichannel processing 9-6
sample-based signals 1-13

combining multichannel signals 1-35

Index-7

Index

combining single-channel signals 1-32
concatenating multichannel signals 1-35
concatenating single-channel signals 1-32
converting to frame-based 2-33
converting to frame-based with overlap 2-37
creating 1-19
deconstructing multichannel signals 1-42
exporting 1-65
importing 1-58
importing and exporting 1-58
multichannel 1-32
single channel 1-13
splitting multichannel signals 1-42
sample-based single channel processing 9-5
samples
adding 2-25
deleting 2-25
rearranging 2-26
sampling 2-2
See also sample periods and frame periods
saturation 7-7
scalar quantizers 5-2
creating 5-5
scaling 7-6
separating
multichannel frame-based signals 1-49
sequences
defining a discrete-time signal 1-2
signals
benefits of frame-based 1-16
characteristics 1-2
continuous-time 1-11
converting frame-based to sample-based 2-45
definition of discrete-time 1-2
definition of frequency 1-2
discrete-time terminology 1-2
frame-based 1-15
inspecting the frame period of 2-5
inspecting the sample period of 2-3
multichannel 1-13

Index-8

Nyquist frequency 1-2
Nyquist rate 1-2
sample-based 1-13
terminology 1-3
simulations
running from the command line 2-50
single channel signals
frame-based 1-15
sample-based 1-13
single-rate
blocks 2-58
models 2-58
single-tasking mode 2-57
size of a frame 2-11
sliding windows
example 6-3
solvers
fixed-step 1-6
variable-step 1-6
solving
linear systems 6-7
source blocks
defined 1-11
sample periods of 1-11
sources
sample periods of 1-11
speech
analysis and synthesis 5-2
splitting
multichannel frame-based signals into
individual signals 1-49
multichannel sample-based signals 1-42
multichannel sample-based signals into
individual signals 1-42
multichannel sample-based signals into
other multichannel signals 1-45
standard deviation 6-2
statistics
operations 6-2
Statistics library 6-2

Index

step method 8-7
stopband attenuation 3-51
streaming data
using System objects 8-6
symbols
time and frequency 1-2
System object
close method 8-8
code generation
signal processing objects 9-3
creating an instance 8-3
description 8-2
fixed point 9-10
signal processing objects 9-11
getNumInputs method 8-7
getNumOutputs method 8-7
isDone method 8-7
locked vs. unlocked mode 8-4
methods 8-6
preferences 9-12
properties 8-4
property values 8-5
reset method 8-7
sample- vs. frame-based 9-5
setting frame-based processing 9-9
signal processing 9-2
signal processing example 9-15
step method 8-7
tunable property 8-5
using with Embedded MATLAB 8-9
value-only input 8-5
system-level settings
fixed-point 7-25

T

tasking latency 2-57
example 2-59
predicting 2-59

tasking modes 2-57

terminology
sample time and sample period 1-3
time and frequency 1-2
throughput rates
increasing 1-17
time-domain data
displaying 1-79
transforming it into the frequency
domain 4-2
transforming
frequency-domain data 4-7
time-domain data 4-2
tunable 8-5
two’s complement 7-12

V)

unbuffering 2-45
and rate conversion 2-45
partial 2-25
to a sample-based signal 2-26
units of time and frequency measures 1-2
upsampling 2-12
See also rate conversion
using
the FFT block 4-2
the IFFT block 4-7

v

value-only input 8-5
variable-step solver 1-6
vector quantizers 5-10
configuring the model 5-11
creating 5-10
running the model 5-11
viewing
frequency-domain data 1-100
time-domain data 1-79

Index-9

Index

w Zero-Order Hold block 1-11
wrapping zero-padding 2-22
fixed-point data types 7-7 causing unintentional rate conversions 2-24
Zeros
7z padding with 2-26

zero algorithmic delay 2-51

Index-10

	toc
	Working with Signals
	Discrete-Time Signals
	Time and Frequency Terminology
	Recommended Settings for Discrete-Time Simulations
	Other Settings for Discrete-Time Simulations
	Cross-Rate Operations

	Continuous-Time Signals
	Continuous-Time Source Blocks
	Continuous-Time Nonsource Blocks

	Sample-Based Signals
	Sample-Based Single Channel Signals
	Sample-Based Multichannel Signals

	Frame-Based Signals
	Frame-Based Single Channel Signals
	Frame-Based Multichannel Signals
	Benefits of Frame-Based Processing
	Accelerating Real-Time Systems
	Accelerating Simulations

	Creating Sample-Based Signals
	Using the Constant Block
	Creating a 1-D Vector Signal

	Using the Signal from Workspace Block

	Creating Frame-Based Signals
	Using the Sine Wave Block
	Using the Signal from Workspace Block

	Creating Multichannel Sample-Based Signals
	Multichannel Sample-Based Signals
	Combining Single-Channel Sample-Based Signals
	Combining Multichannel Sample-Based Signals

	Creating Multichannel Frame-Based Signals
	Multichannel Frame-Based Signals
	Combining Frame-Based Signals

	Deconstructing Multichannel Sample-Based Signals
	Splitting Multichannel Sample-Based Signals into Individual Sign
	Splitting Multichannel Sample-Based Signals into Several Multich

	Deconstructing Multichannel Frame-Based Signals
	Splitting Multichannel Frame-Based Signals into Individual Signa
	Reordering Channels in Multichannel Frame-Based Signals

	Importing and Exporting Sample-Based Signals
	Importing Sample-Based Vector Signals
	Importing Sample-Based Matrix Signals
	Exporting Sample-Based Signals

	Importing and Exporting Frame-Based Signals
	Importing Frame-Based Signals
	Exporting Frame-Based Signals

	Displaying Time-Domain Data
	Displaying Time Domain Data in the Vector Scope
	Displaying Time-Domain Data in the Time Scope
	Example Workflow
	Configuring the Time Scope
	Using the Playback Controls
	Modifying the Scope Display
	Inspecting Your Data (Scaling the Axes and Zooming)
	Managing Multiple Time Scopes

	Displaying Frequency-Domain Data

	Advanced Signal Concepts
	Inspecting Sample Rates and Frame Rates
	Sample Rate and Frame Rate Concepts
	Inspecting Sample-Based Signals Using the Probe Block
	Inspecting Frame-Based Signals Using the Probe Block
	Inspecting Sample-Based Signals Using Color Coding
	Inspecting Frame-Based Signals Using Color Coding

	Converting Sample and Frame Rates
	Rate Conversion Blocks
	Direct Rate Conversion

	Rate Conversion by Frame-Rate Adjustment
	Rate Conversion by Frame-Size Adjustment
	Avoiding Unintended Rate Conversion
	Frame Rebuffering Blocks
	Blocks for Frame Rebuffering with Preservation of the Signal
	Blocks for Frame Rebuffering with Alteration of the Signal

	Buffering with Preservation of the Signal
	Buffering with Alteration of the Signal

	Converting Frame Status
	Frame Status
	Buffering Sample-Based Signals into Frame-Based Signals
	Buffering Sample-Based Signals into Frame-Based Signals with Ove
	Buffering Frame-Based Signals into Other Frame-Based Signals
	Buffering Delay and Initial Conditions
	Unbuffering Frame-Based Signals into Sample-Based Signals

	Delay and Latency
	Computational Delay
	Reducing Computational Delay

	Algorithmic Delay
	Zero Algorithmic Delay
	Zero Algorithmic Delay and Algebraic Loops

	Basic Algorithmic Delay
	Excess Algorithmic Delay (Tasking Latency)
	Simulink Tasking Mode
	Block Rate Type
	Model Rate Type
	Block Sample Mode

	Predicting Tasking Latency

	Filters
	Digital Filter Block
	Overview of the Digital Filter Block
	Implementing a Lowpass Filter
	Implementing a Highpass Filter
	Filtering High-Frequency Noise
	Specifying Static Filters
	Tuning the Filter Coefficient Values During Simulation

	Specifying Time-Varying Filters
	Setting the Coefficient Update Rate
	Providing Filter Coefficient Vectors at Block Input Ports
	Removing the a0 Term in the Filter Structure

	Specifying the SOS Matrix (Biquadratic Filter Coefficients)

	Digital Filter Design Block
	Overview of the Digital Filter Design Block
	Filter Design and Analysis
	Filter Implementation
	Saving, Exporting, and Importing Filters

	Choosing Between Filter Design Blocks
	Similarities
	Differences
	When to Use Each Block

	Creating a Lowpass Filter
	Creating a Highpass Filter
	Filtering High-Frequency Noise

	Filter Realization Wizard
	Overview of the Filter Realization Wizard
	Designing and Implementing a Fixed-Point Filter
	Part 1 — Creating a Signal with Added Noise
	Part 2 — Creating a Fixed-Point Filter with the Filter Realizati
	Part 3 — Building a Model to Filter a Signal
	Part 4 — Looking at Filtering Results

	Setting the Filter Structure and Number of Filter Sections
	Optimizing the Filter Structure

	Analog Filter Design Block
	Adaptive Filters
	Creating an Acoustic Environment
	Creating an Adaptive Filter
	Customizing an Adaptive Filter
	Adaptive Filtering Demos
	Opening Demos

	Multirate Filters
	Filter Banks
	Dyadic Analysis Filter Banks
	Dyadic Synthesis Filter Banks

	Multirate Filtering Examples

	Transforms
	Transforming Time-Domain Data into the Frequency Domain
	Transforming Frequency-Domain Data into the Time Domain
	Linear and Bit-Reversed Output Order
	FFT and IFFT Blocks Data Order
	Finding the Bit-Reversed Order of Your Frequency Indices

	Calculating the Channel Latencies Required for Wavelet Reconstru
	Analyzing Your Model
	Calculating the Group Delay of Your Filters
	Reconstructing the Filter Bank System
	Equalizing the Delay on Each Filter Path
	Updating and Running the Model
	References

	Quantizers
	Scalar Quantizers
	Analysis and Synthesis of Speech
	Identifying Your Residual Signal and Reflection Coefficients
	Creating a Scalar Quantizer

	Vector Quantizers
	Building Your Vector Quantizer Model
	Configuring and Running Your Model

	Statistics, Estimation, and Linear Algebra
	Statistics
	Statistics Blocks
	Basic Operations
	Example: Sliding Windows

	Running Operations

	Power Spectrum Estimation
	Linear Algebra
	Linear Algebra Blocks
	Linear System Solvers
	Example: LU Solver

	Matrix Factorizations
	Example: LU Factorization

	Matrix Inverses
	Example: LU Inverse

	Working with Fixed-Point Data
	Fixed-Point Signal Processing Development
	Fixed-Point Features
	Benefits of Fixed-Point Hardware
	Benefits of Fixed-Point Design with Signal Processing Blockset S
	Fixed-Point Signal Processing Applications

	Concepts and Terminology
	Fixed-Point Data Types
	Scaling
	Precision and Range
	Range
	Precision

	Arithmetic Operations
	Modulo Arithmetic
	Two’s Complement
	Addition and Subtraction
	Multiplication
	Multiplication Data Types

	Casts
	Casts to the Accumulator Data Type
	Casts to the Intermediate Product or Product Output Data Type
	Casts to the Output Data Type
	Casting Examples
	Casting from a Shorter Data Type to a Longer Data Type. Conside
	Casting from a Longer Data Type to a Shorter Data Type. Conside

	Specifying Fixed-Point Attributes
	Fixed-Point Block Parameters
	Using the Data Type Assistant
	Checking Signal Ranges

	Specifying System-Level Settings
	Logging
	Autoscaling
	Data type override

	Inherit via Internal Rule
	Internal Rule for Accumulator Data Types
	Internal Rule for Product Data Types
	Internal Rule for Output Data Types
	The Effect of the Hardware Implementation Pane on the Internal R
	Internal Rule Examples

	Example: Selecting and Specifying Data Types for Fixed-Point Blo
	Preparing the Model
	Using Data Type Override to Find a Floating-Point Benchmark
	Using the Fixed-Point Tool to Propose Fraction Lengths
	Examining the Results and Accepting the Proposed Scaling

	Fixed-Point Filtering
	Fixed-Point Filtering Blocks
	Filter Implementation Blocks
	Filter Design and Implementation Blocks

	Getting Started with System Objects
	What Are System Objects?
	Setting Up and Running System Objects
	Creating an Instance of a System Object
	Understanding System Object Modes
	Viewing System Object Properties
	Setting System Object Property Values
	Changing Properties While Running System Objects

	Using Methods to Run System Objects
	Understanding the Advantages of Using Methods
	Common Methods

	Finding Help and Demos for System Objects

	Using System Objects with the Embedded MATLAB Subset
	Considerations for Using System Objects with the Embedded MATLAB
	Using System Objects with Embedded MATLAB Coder
	Using System Objects with the Embedded MATLAB Function Block
	Using System Objects with Embedded MATLAB MEX

	Using Signal Processing System Objects
	What Are Signal Processing System Objects?
	Generating Code for Signal Processing System Objects
	Signal Processing Code Generation Support
	Working with Signals and Fixed-Point Data
	What Are Sample- and Frame-Based Processing?
	Sample-Based Single Channel Processing
	Sample-Based Multichannel Processing
	Frame-Based Single Channel Processing
	Frame-Based Multichannel Processing
	Setting the Sample- or Frame-Based Processing Property
	Benefits of Frame-Based Processing

	Working with Fixed-Point Data
	Getting Information About Fixed-Point System Objects
	Signal Processing System Objects That Support Fixed-Point Data P
	Displaying Fixed-Point Properties
	Setting System Object Fixed-Point Properties

	Example: Using System Objects in Signal Processing Applications:

	Index

	tables
	Length Requirements for Time-Varying Filter Coefficient Vectors
	Rate Requirements for Time-Varying Filter Coefficient Vectors
	Parameter Settings for the Other Blocks
	Notable Characteristics of Asymmetric and Symmetric Dyadic Analy
	Notable Characteristics of Asymmetric and Symmetric Dyadic Synth

